Skip to main content
Log in

Sets of Absolute Continuity for Harmonic Measure in NTA Domains

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We show that if Ω is an NTA domain with harmonic measure ω and EΩ is contained in an Ahlfors regular set, then \(\omega |_{E}\ll \mathcal {H}^{d}|_{E}\). Moreover, this holds quantitatively in the sense that for all τ>0ω obeys an A -type condition with respect to \(\mathcal {H}^{d}|_{E^{\prime }}\), where E E is so that ω(EE )<τ ω(E), even though Ω may not even be locally \(\mathcal {H}^{d}\)-finite. We also show that, for uniform domains with uniform complements, if EΩ is the Lipschitz image of a subset of \(\mathbb {R}^{d}\), then there is E E with \(\mathcal {H}^{d}(E\backslash E^{\prime })<\tau \mathcal {H}^{d}(E)\) upon which a similar A -type condition holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akman, M., Badger, M., Hofmann, S., Martell, J.M.: Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries. Preprint 2015. arXiv:1507.02039

  2. Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains, to appear in Journal of the European Mathematical Society

  3. Azzam, J.: A characterization of 1-rectifiable doubling measures with connected supports to appear in Analysis and PDE (2015)

  4. Azzam, J., Mourgoglou, M., Tolsa, X.: Singular sets for harmonic measure on locally flat domains with locally finite surface measure. Preprint 2015. arXiv:1501.07585

  5. Azzam, J., Hofmann, S., Martell, J.M., Mayboroda, S., Mourgoglou, M., Tolsa, X., Volberg, A.: Rectifiability of harmonic measure, submitted

  6. Azzam, J., Schul, R.: Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps. Geom. Funct. Anal. 22(5), 1062–1123 (2012). MR2989430

    Article  MathSciNet  MATH  Google Scholar 

  7. Badger, M.: Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited. Math. Z. 270(1-2), 241–262 (2012). MR 2875832 (2012k:31008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bennewitz, B., Lewis, J.L.: On weak reverse Hölder inequalities for nondoubling harmonic measures. Complex Var. Theory Appl. 149(17-9), 571–582 (2004). MR 2088048 (2005f:31005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. 132 (3), 511–547 (1990). MR1078268 (92c:30026)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990). MR1096400 (92k:42020)

    MathSciNet  MATH  Google Scholar 

  11. Dahlberg, B.E.J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3), 275–288 (1977). MR0466593 (57 #6470)

    Article  MathSciNet  MATH  Google Scholar 

  12. David, G.: Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev. Mat. Iberoamericana 4(1), 73–114 (1988). MR1009120 (90h:42026)

    Article  MathSciNet  MATH  Google Scholar 

  13. David, G., Jerison, D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39(3), 831–845 (1990). MR1078740 (92b:42021)

    Article  MathSciNet  MATH  Google Scholar 

  14. David, G., Semmes, S.W.: Singular integrals and rectifiable sets in R n: Beyond Lipschitz graphs. Astérisque 193, 152 (1991). MR1113517 (92j:42016)

    MathSciNet  Google Scholar 

  15. David, G.: Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993). MR1251061 (94i:28003)

    Book  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. MR1814364 (2001k:35004)

    MATH  Google Scholar 

  17. Helms, L.L.: Potential theory, Universitext. Springer-Verlag London, Ltd., London (2009). MR 2526019 (2011a:31001)

    Book  Google Scholar 

  18. Hofmann, S., Martell, J.M.: Uniform rectifiability and harmonic measure i: Uniform rectifiability implies poisson kernels in l p. Ann. Sci. Cole Norm. Sup. 47(3), 577–654 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Hofmann, S., Le, P., Martell, J.M., Nyström, K.: The weak- A property of harmonic and p-harmonic measures implies uniform rectifiability, arXiv preprint arXiv:1511.09270 (2015)

  20. Hytönen, T., Martikainen, H.: Non-homogeneous T b theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22(4), 1071–1107 (2012). MR2965363

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982). MR676988 (84d:31005b)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaufman, R., Wu, J.-M.: Distortion of the boundary under conformal mapping. Mich. Math. J. 29(3), 267–280 (1982). MR674280 (84b:31003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, J.L., Verchota, G.C., Vogel, A.L.: Wolff snowflakes. Pac. J. Math. 218(1), 139–166 (2005). MR 2224593 (2006m:31005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mattila, P.: Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995). Fractals and rectifiability. MR1333890 (96h:28006)

    Book  Google Scholar 

  25. Mourgoglou, M.: Uniform domains with rectifiable boundaries and harmonic measure. Preprint 2015. arXiv:1505.06167

  26. Mourglgou, M., Tolsa, X.: Harmonic measure and Riesz transform in uniform and general domains. Preprint 2015. arXiv:1509.08386

  27. Øksendal, B.: Sets of harmonic measure zero, Aspects of contemporary complex analysis (Proceedings NATO Advance Study Institute, University Durham, Durham, 1979), Academic Press, London-New York, 1980, pp. 469?473. MR 623491 (82k:30028)

  28. Øksendal, B.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR1232192 (95c:42002)

  29. Wolff, T.H.: Counterexamples with harmonic gradients in R 3, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 321–384. MR 1315554(95m:31010) (1991)

  30. Wu, J.-M.: On singularity of harmonic measure in space. Pacific J. Math. 121(2), 485–496 (1986). MR819202 (87e:31009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Azzam.

Additional information

The author was supported by grants ERC grant 320501 of the European Research Council (FP7/2007-2013) and NSF RTG grant 0838 212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzam, J. Sets of Absolute Continuity for Harmonic Measure in NTA Domains. Potential Anal 45, 403–433 (2016). https://doi.org/10.1007/s11118-016-9550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9550-5

Keywords

Mathematics Subject Classification (2010)

Navigation