Skip to main content
Log in

Bounded \(\lambda \)-Harmonic Functions in Domains of \({\mathbb {H}}^n\) with Asymptotic Boundary with Fractional Dimension

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The existence and nonexistence of \(\lambda \)-harmonic functions in unbounded domains of \({{\mathbb {H}}}^n\) are investigated. We prove that if the \((n-1)/2\) Hausdorff measure of the asymptotic boundary of a domain \(\Omega \) is zero, then there is no bounded \(\lambda \)-harmonic function of \(\Omega \) for \(\lambda \in [0,\lambda _1({\mathbb {H}}^n)]\), where \(\lambda _1({\mathbb {H}}^n)=(n-1)^2/4\). For these domains, we have comparison principle and some maximum principle. Conversely, for any \(s>(n-1)/2,\) we prove the existence of domains with asymptotic boundary of dimension s for which there are bounded \(\lambda _1\)-harmonic functions that decay exponentially at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: On the representation theorem for solutions of the Helmholtz equation on the hyperbolic space. In: Partial Differential Equations and Related Subjects (Trento, 1990), Pitman Res. NotesMath. Ser., vol. 269. Longman Scientific & Technical, Harlow 1992, 1–20 (1990)

  2. Ancona, A.: Negatively curved manifolds, elliptic operators and the Martin boundary. Ann. Math. 125, 495–536 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ancona, A.: Sur les fonctions propres positives des variétés de Cartan–Hadamard. Comment. Math. Helv. 64, 62–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonorino, L.P., Klaser, P.K., Telichevesky, M.: Boundedness of Laplacian eigenfunctions on manifolds of infinite volume. Commun. Anal. Geom. 24(4), 753–768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Publishing Company Limited, New York (1972)

    MATH  Google Scholar 

  7. Eberlein, P., O’Neill, B.: Visibility manifolds. Pac. J. Math. 46, 45–109 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  9. Grellier, S., Otal, J.-P.: Bounded eigenfunctions in the real hyperbolic space. Int. Math. Res. Not. IMRN 62, 3867–3897 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helgason, S.: Eigenspaces of the Laplacian; integral representations and irreducibility. J. Funct. Anal. 17(3), 328–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Minemura, K.: Eigenfunctions of the Laplacian on a real hyperbolic space. J. Math. Soc. Jpn. 27(1), 82–105 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schoen, R., Yau, S.T.: Lectures on Differential Geometry, Conference Proceeding and Lecture Notes in Geometry and Topology, vol. 1. International Press, Boston (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Prange Bonorino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonorino, L.P., Klaser, P.K. Bounded \(\lambda \)-Harmonic Functions in Domains of \({\mathbb {H}}^n\) with Asymptotic Boundary with Fractional Dimension. J Geom Anal 28, 2503–2521 (2018). https://doi.org/10.1007/s12220-017-9915-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9915-z

Keywords

Mathematics Subject Classification

Navigation