Skip to main content
Log in

Faber-Krahn Inequality for Anisotropic Eigenvalue Problems with Robin Boundary Conditions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the main properties of the first eigenvalue λ 1(Ω) and its eigenfunctions of a class of highly nonlinear elliptic operators in a bounded Lipschitz domain Ω ⊂ ℝ n , assuming a Robin boundary condition. Moreover, we prove a Faber-Krahn inequality for λ 1(Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvino, A., Ferone, V., Lions, P.-L., Trombetti, G.: Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire. 14(2), 275–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews, B.: Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50(2), 783–827 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Belloni, M., Ferone, V., Kawohl, B.: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 54(5), 771–783 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Belloni, M., Kawohl, B.: A direct uniqueness proof for equations involving the p−Laplace operator. Manuscripta Math. 109(2), 229–231 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Belloni, M., Kawohl, B., Juutinen, P.: The p-Laplace eigenvalue problem as \(p\rightarrow \infty \) in a Finsler metric. J. Eur. Math. Soc. (JEMS) 8(1), 123–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bossel, M.-H.: Membranes lastiquement liés: extension du thórème de Rayleigh-Faber-Krahn et de l’inǵalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302(1), 47–50 (1986)

    MathSciNet  MATH  Google Scholar 

  • Brandolini, B., Chiacchio, F., Trombetti, C.: Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems. Proc. Roy. Soc. Edimburgh, Sect. A-Mathematics. (in press)

  • Brasco, L., Franzina, G.: An anisotopic eigenvalve problem of Stekloff type and weighted Wulff inequalities. Nonlinear Diffez. Equ. Appl. in press. doi:10.1007/s00030-013-0231-4

  • Bucur, D., Daners, D.: An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. 37, 75–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Busemann, H.: The isoperimetric problem for Minkowski area. Amer. J. Math. 71, 743–762 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiacchio, F., Di Blasio, G.: Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis. 29(2), 199–216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Cianchi, A., Salani, P.: Overdetermined anisotropic elliptic problems. Math. Ann. 345(4), 859–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Crasta, G., Malusa, A.: The distance function from the boundary in a Minkowski space. Trans. Amer. Math. Soc. 359(12), 5725–5759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Diff. Integr. Equat. 13, 721–746 (2000)

    MATH  Google Scholar 

  • Dacorogna, B., Pfister, C.-E.: Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. (9) 71(2), 97–118 (1992)

    MathSciNet  MATH  Google Scholar 

  • Dai, Q.-y., Fu, Y.-x.: Faber-Krahn inequality for Robin problems involving p-Laplacian. Acta Mathematica Applicatae Sinica, English Series. 27, 13–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Daners, D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Della Pietra, F., Gavitone, N.: Symmetrization for Neumann anisotropic problems and related questions. Adv. Nonlinear Stud. 12(2), 219–235 (2012)

    MathSciNet  MATH  Google Scholar 

  • Della Pietra, F., Gavitone, N.: Anisotropic elliptic equations with general growth in the gradient and Hardy-type potentials. J. Diff. Equat. 255(11), 3788–3810 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Della Pietra, F., Gavitone, N.: Anisotropic elliptic problems involving potentials Hardy-type potentials. J. Math. Anal. Appl. 397(2), 800–813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Della Pietra, F., Gavitone, N.: Relative isoperimetric inequality in the plane: the anisotropic case. J. Convex. Anal. 20(1), 157–180 (2013)

    MathSciNet  MATH  Google Scholar 

  • Della Pietra, F., Gavitone, N.: Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators. Math. Nachr. 287(2–3), 194–209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • DiBenedetto, E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferone, V., Kawohl, B.: Remarks on a Finsler-Laplacian. Proc. Am. Math. Soc.137(1), 247–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferone, V., Nitsch, C., Trombetti, C.: On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue, pp. 1–22. arXiv:1307.3788, 2013

  • Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A. 119(1-2), 125–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, 1983

  • Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Diff. Equat. 12(4), 407–434 (2007)

    MathSciNet  MATH  Google Scholar 

  • Kovařík, H.: On the lowest eigenvalue of laplace operators with mixed boundary conditions. J. Geom. Anal., 1–17 (2012). doi: 10.1007/s12220-012-9383-4

  • Kovařík, H., Laptev, A.: Hardy inequalities for Robin Laplacians. J. Funct. Anal. 262, 4972–4986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)

    Google Scholar 

  • Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal.: T.M.A. 64(5), 1057–1099 (2006)

    Article  MATH  Google Scholar 

  • Maz’ya, V.G.: Sobolev Spaces. Springer Verlag, Berlin (1985)

    Google Scholar 

  • Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1972)

    Google Scholar 

  • Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equat. 51(1), 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Trudinger, N.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, G., Xia, C.: A Characterization of the Wulff Shape by an Overdetermined Anisotropic PDE. Arch. Ration. Mech. Anal. 199(1), 99–115 (2010)

    Article  MathSciNet  Google Scholar 

  • Wang, G., Xia, C.: An optimal anisotropic Poincaré inequality for convex domains. Pac. J. Math. 258(2), 305–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H.: An Isoperimetric Inequality for the N-dimensional free membrane problem. J. Ration. Mech. Anal. 5(4), 633–636 (1956)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Della Pietra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Pietra, F., Gavitone, N. Faber-Krahn Inequality for Anisotropic Eigenvalue Problems with Robin Boundary Conditions. Potential Anal 41, 1147–1166 (2014). https://doi.org/10.1007/s11118-014-9412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9412-y

Keywords

Mathematics Subject Classifications (2010)

Navigation