Skip to main content
Log in

Averaging principle for diffusion processes via Dirichlet forms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We study diffusion processes driven by a Brownian motion with regular drift in a finite dimension setting. The drift has two components on different time scales, a fast conservative component and a slow dissipative component. Using the theory of Dirichlet form and Mosco-convergence we obtain simpler proofs, interpretations and new results of the averaging principle for such processes when we speed up the conservative component. As a result, one obtains an effective process with values in the space of connected level sets of the conserved quantities. The use of Dirichlet forms provides a simple and nice way to characterize this process and its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functionsStudies in Advanced Mathematics. CRC Press (1992)

  2. Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1–31 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Freidlin, M., Sheu, Shuenn-Jyi: Diffusion processes on graphs: stochastic differential equations, large deviation principle. Probab. Theory Relat. Fields 116(2), 181–220 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freidlin, Mark, Weber, Matthias: Random perturbations of dynamical systems and diffusion processes with conservation laws. Probab. Theory Relat. Fields 128(3), 441–466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freidlin, M., Weber, M.: On random perturbations of Hamiltonian systems with many degrees of freedom. Stoch. Process Appl. 94(2), 199–239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Freidlin, M. I., Wentzell, A. D.: Random Perturbations of Dynamical Systems. Springer (2012)

  7. Freidlin, M. I., Wentzell, A. D.: Diffusion processes on an open book and the averaging principle. Stoch. Process Appl. 113(1), 101–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freidlin, M. I., Wentzell, A. D.: Random perturbations of Hamiltonian systems. Mem. Amer. Math. Soc. 109(523) (1994)

  9. Freidlin, M. I., Wentzell, A. D.: Diffusion processes on graphs and the averaging principle. Ann. Probab. 21(4), 2215–2245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hino, M.: Convergence of non-symmetric forms. J. Math. Kyoto Univ. 38(2), 329–341 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Jacod, J., Shiryaev, A. N.: Limit Theorems for Stochastic Processes. Springer-Verlag (1987)

  12. Kant, U., Klauss, T., Voigt, J., Weber, M.: Dirichlet forms for singular one-dimensional operators and on graphs. J. Evol. Equ. 9(4), 637–659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolesnikov, A. V.: Convergence of Dirichlet forms with changing speed measures on d. Forum. Math. 17(2), 225–259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kostrykin, V., Potthoff, J., Schrader, R.: Brownian motions on metric graphs. J. Math. Phys. 53(9) (2012)

  15. Krantz, S. G., Parks, H. R.: Geometric Integration Theory. Birkhäuser Boston Inc. (2008)

  16. Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Comm. Anal. Geom. 11(4), 599–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Springer-Verlag (1992)

  18. Mandl, P.: Analytical Treatment of One-Dimensional Markov Processes. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague (1968)

    MATH  Google Scholar 

  19. Oshima, Y.: Walter de Gruyter & Co.Berlin (2013)

  20. Stroock, D. W., Varadhan, S. R., Srinivasa: Multidimensional Diffusion Processes. Springer-Verlag (1979)

  21. Tölle, J.: University Bielefeld (2006)

Download references

Acknowledgments

We thank an anonymous referee for pointing out the fact that condition ?? of Assumption ?? could probably be relaxed to \(\nabla \cdot (hF)\leqslant c\) for some positive constant c. In this case, one should work with lower bounded semi-Dirichlet forms (see e.g. [19]). However, we ask for condition ?? in order to work with simple Dirichlet forms (and thus simplify the Mosco-convergence results).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Barret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barret, F., von Renesse, M. Averaging principle for diffusion processes via Dirichlet forms. Potential Anal 41, 1033–1063 (2014). https://doi.org/10.1007/s11118-014-9405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9405-x

Keywords

Mathematics Subject Classifications (2010)

Navigation