Skip to main content
Log in

Nonlinear Neumann–Transmission Problems for Stokes and Brinkman Equations on Euclidean Lipschitz Domains

  • Published:
Potential Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this paper is to use a layer potential analysis and the Leray–Schauder degree theory to show an existence result for a nonlinear Neumann–transmission problem corresponding to the Stokes and Brinkman operators on Euclidean Lipschitz domains with boundary data in L p spaces, Sobolev spaces, and also in Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. 35, 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Ammari, H., Kang, H., Lee, H.: Layer Potential Techniques in Spectral Analysis. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  4. Begehr, H., Hile, G.N.: Nonlinear Riemann boundary value problems for a nonlinear elliptic system in the plane. Math. Z. 179, 241–261 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Begehr, H., Hsiao, G.C.: Nonlinear boundary value problems for a class of elliptic systems. In: Complexe Analysis und ihre Anwendung auf partielle Differentialgleichungen, pp. 90–102. Martin–Luther–Unniversität, Halle-Wittenberg (1980)

    Google Scholar 

  6. Begehr, H., Hsiao, G.C.: Nonlinear boundary value problems of Riemann–Hilbert type. Contemp. Math. 11, 139–153 (1982)

    Article  MATH  Google Scholar 

  7. Burenkov, V.I., Lanza de Cristoforis, M.: Spectral stability of the Robin Laplacian. Proc. Steklov Inst. Math. 260, 68–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carleman, T.: Über eine nichtlineare Randwertaufgabe bei der Gleichung Δu = 0. Math. Z. 9, 35–43 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, T.K.: Boundary integral operators over Lipschitz surfaces for a Stokes equation in \({\mathbb R}^n\). Potential Anal. 29, 105–117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized direct segregated boundary-domain integral equations for variable coefficient transmission problems with interface crack. Mem. Differ. Equ. Math. Phys. 52, 17–64 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Costabel, M.: Some historical remarks on the positivity of boundary integral operators. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis, pp. 1–27. Springer, Berlin (2007)

    Chapter  Google Scholar 

  13. Cwikel, M.: Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 65, 333–343 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlberg, B.E.J., Kenig, C.: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. 125, 437–465 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahlberg, B.E.J., Kenig, C., Verchota, G.C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dalla Riva, M., Lanza de Cristoforis, M.: Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach. Eurasian Math. J. 1, 31–58 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Dindos̆, M.: Hardy spaces and potential theory on C 1 domains in Riemannian manifolds. Mem. Am. Math. Soc. 191, 894 (2008)

    MathSciNet  Google Scholar 

  18. Dindos̆, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C 1 domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)

    Article  MathSciNet  Google Scholar 

  19. Efendiev, M.A., Schmitz, H., Wendland, W.: On some nonlinear potential problems. Electr. J. Differ. Equ. 1999, 1–17 (1999)

    MathSciNet  Google Scholar 

  20. Escauriaza, L., Mitrea, M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216, 141–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fabes, E., Jodeit, M., Rivère, N.: Potential techniques for boundary value problems on C 1-domains. Acta Math. 141, 165–186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Folland, G.B.: Real analysis. In: Modern Techniques and their Applications, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  25. Gatica, G.N., Meddahi, S.: A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comput. 70, 1461–1480 (2000)

    Article  MathSciNet  Google Scholar 

  26. Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259, 2147–2164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gesztesy, F., Mitrea, M.: Robin-to-Robin maps and Krein-Type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In: Modern Analysis and Applications: Mark Krein Centenary Conference. Differential Operators and Mechanics, Book Series: Operator Theory Advances and Applications, vol. 191, pp. 81–113 (2009)

  28. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of 2nd Order. Springer, Berlin (2001)

    Google Scholar 

  29. Hofmann, S., Mitrea, M., Taylor, M.: Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains. Int. Math. Res. Not. 14, 2567–2865 (2010)

    MathSciNet  Google Scholar 

  30. Hsiao, G.C., Wendland, W.L.: A finite element method for an integral equation of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  32. Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. 4, 203–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accesible domains. Adv. Math. 46, 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jerison, D.S., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kalton, N.J., Mayboroda, S., Mitrea, M.: Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations. Contemp. Math. 445, 121–177 (2007)

    Article  MathSciNet  Google Scholar 

  36. Kalton, N., Mitrea, M.: Stability of Fredholm properties on interpolation scales of quasi-Banach spaces and applications. Trans. Am. Math. Soc. 350, 3837–2901 (1998)

    Article  MathSciNet  Google Scholar 

  37. Kenig, C.E.: Harmonic analysis techniques for 2nd order elliptic boundary value problems. In: AMS CBMS vol. 83 (1994)

  38. Kim, A.S., Shen, Z.: The Neumann problem in L p on Lipschitz and convex domains. J. Funct. Anal. 255, 1817–1830 (2010)

    Article  MathSciNet  Google Scholar 

  39. Klingelhöfer, K.: Über nichtlineare Randwertaufgaben der Potentialtheorie. Mitt. Math. Semin. Giessen Heft. 76, 1–70 (1967)

    Google Scholar 

  40. Klingelhöfer, K.: Modified Hammerstein integral equations and nonlinear harmonic boundary value problems. J. Math. Anal. Appl. 28, 77–87 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  41. Klingelhöfer, K.: Nonlinear harmonic boundary value problems. I. Arch. Ration. Mech. Anal. 31, 364–371 (1968)/(1969)

    Article  MATH  Google Scholar 

  42. Klingelhöfer, K.: Nonlinear harmonic boundary value problems. II. Modified Hammerstein integral equations. J. Math. Anal. Appl. 25, 592–606 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kohr, M.: The interior Neumann problem for the Stokes resolvent system in a bounded domain in \({\mathbb R}^n\). Arch. Mech. 59, 1–22 (2007)

    MathSciNet  Google Scholar 

  44. Kohr, M., Pintea, C., Wendland, W.L.: Stokes-Brinkman transmission problems on Lipschitz and C 1 domains in Riemannian manifolds. Commun. Pure Appl. Anal. 9, 493–537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds: transmission problems in Lipschitz and C 1 domains. Potential Anal. 32, 229–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kohr, M., Pintea, C., Wendland, W.L.: Dirichlet-transmission problems for general Brinkman operators on Lipschitz and C 1 domains in Riemannian manifolds. Discrete Continuous Dyn. Syst. B. 15, 999–1018 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kohr M., Pintea C., Wendland W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. (2012). doi:10.1093/imrn/RNS158

    Google Scholar 

  48. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton, UK (2004)

    MATH  Google Scholar 

  49. Kohr, M., Raja Sekhar, G.P., Wendland, W.L.: Boundary integral equations for a three- dimensional Stokes-Brinkman cell model. Math. Models Methods Appl. Sci. 18, 2055–2085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kohr, M., Wendland, W.L.: Boundary integral equations for a three-dimensional Brinkman flow problem. Math. Nachr. 282, 1–29 (2009)

    Article  MathSciNet  Google Scholar 

  51. Lamberti, P.D., Lanza de Cristoforis, M.: A global Lipschitz continuity result for a domain dependent Neumann eigenvalue problem for the Laplace operator. J. Differ. Equ. 216, 109–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lamberti, P.D., Lanza de Cristoforis, M.: Persistence of eigenvalues and multiplicity in the Neumann problem for the Laplace operator on nonsmooth domains. Rend. Circ. Mat. Palermo, Series II, Suppl. 76, 413–427 (2005)

    MathSciNet  Google Scholar 

  53. Lanza de Cristoforis, M.: Singular perturbation problems in potential theory and applications. In: Complex Analysis and Potential Theory, pp. 131–139. World Sci. Publ., NJ (2007)

    Google Scholar 

  54. Lanzani, L., Shen Z.: On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Commun. Partial Differ. Equ. 29, 91–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mayboroda, S., Mitrea, M.: Sharp estimates for Green potentials on non-smooth domains. Math. Res. Lett. 11, 481–492 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  57. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO. Funct. Anal. Appl. 43, 217–235 (2009)

    Article  MathSciNet  Google Scholar 

  58. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  59. Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Medkov\(\acute{a}\), D.: Integral representation of a solution of the Neumann problem for the Stokes system. Numer. Algorithms 54, 459–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Mikhailov, S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mitrea, D., Mitrea, M., Qiang, S.: Variable coefficient transmission problems and singular integral operators on non-smooth manifolds. J. Integral Equ. Appl. 18, 361–397 (2006)

    Article  MATH  Google Scholar 

  63. Mitrea, D., Mitrea, M., Taylor, M.: Layer potentials, the Hodge Laplacian and global boundary problems in non-smooth Riemannian manifolds. Mem. Am. Math. Soc. 150, 713 (2001)

    MathSciNet  Google Scholar 

  64. Mitrea, M., Monniaux, S.: On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds. Trans. Am. Math. Soc. 361, 3125–3157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (N.Y.) 176(3), 409–457 (2011)

    Article  MathSciNet  Google Scholar 

  66. Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem. J. Funct. Anal. 176, 1–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. Mitrea, M., Taylor, M.: Sobolev and Besov space estimates for solutions to 2nd order PDE on Lipschitz domains in manifolds with Dini or Hölder continuous metric tensors. Commun. Partial Differ. Equ. 30, 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  70. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, viii+241 pp (2012)

    MathSciNet  Google Scholar 

  71. Nakamori, K., Suyama, Y.: On a nonlinear boundary problem for the equations Δu = 0 and Δu = f(x,y) (Esperanto). Mem. Fac. Sci. Kyǔsyǔ Univ. A. 5, 99–106 (1950)

    MathSciNet  Google Scholar 

  72. Power, H., Wrobel, L.C.: Boundary Integral Methods in Fluid Mechanics. WIT Press: Computational Mechanics Publ. Southampton (1995)

  73. Reidinger, B., Steinbach, O.: A symmetric boundary element method for the Stokes problem in multiple connected domains. Math. Methods Appl. Sci. 26, 77–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  74. Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473–511. Springer, Berlin (2010)

    Chapter  Google Scholar 

  75. Shen, Z.: The L p boundary value problems on Lipschitz domains. Adv. Math. 216, 212–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Starita, G., Tartaglione, A.: On the traction problem for the Stokes system. Math. Models Methods Appl. Sci. 12, 813–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. Steinbach, O.: A note on the ellipticity of the single layer potential in two-dimensional elastostatics. J. Math. Anal. Appl. 294, 1–6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Steinbach, O., Wendland, W.L.: On C. Neumann’s method for 2nd-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262, 733–748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus-I. J. Funct. Anal. 207, 399–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publ. Co. Amsterdam (1978)

    Google Scholar 

  81. Varnhorn, W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  82. Verchota, G.C.: Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wegert, E., Khimshiashvili, G., Spitkovsky, I.: Nonlinear transmission problems. International symposium on differential equations and mathematical physics (Tbilisi, 1997). Mem. Differ. Equ. Math. Phys. 12, 223–230 (1997)

    MathSciNet  MATH  Google Scholar 

  84. Wong, M.W.: An Introduction to Pseudo-Differential Operators. World Sci., Singapore (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirela Kohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohr, M., Lanza de Cristoforis, M. & Wendland, W.L. Nonlinear Neumann–Transmission Problems for Stokes and Brinkman Equations on Euclidean Lipschitz Domains. Potential Anal 38, 1123–1171 (2013). https://doi.org/10.1007/s11118-012-9310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9310-0

Keywords

Mathematics Subject Classifications (2010)

Navigation