Skip to main content
Log in

Convergence of the Neumann Series in BEM for the Neumann Problem of the Stokes System

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown. It is shown that we can obtain a solution of this integral equation using the successive approximation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G., Morassi, A., Rosset, E.: The linear constraint in Poincaré and Korn type inequalities. Forum Math. 20, 557–569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, R., Mitrea, I., Mitrea, M., Wright, M.: Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362, 1211–1230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constanda, M.: Some historical remarks on the positivity of boundary integral operators. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis, pp. 1–28. Springer, Berlin (2007)

    Google Scholar 

  4. Dahlberg, B.E.J., Kenig, C., Verchota, G.C.: Boundary value problems for the systems of elastics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Academic Press, New York/London (1972)

    MATH  Google Scholar 

  6. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fabes, E., Sand, M., Seo, J.K.: The spectral radius of the classical layer potentials on convex domains. IMA Vol. Math. Appl. 42, 129–137 (1992)

    Article  MathSciNet  Google Scholar 

  8. Gohberg, I., Marcus, A.: Some remarks on topologically equivalent norms. Izv. Mold. Fil. Akad. Nauk SSSR 10(76), 91–95 (1960) (in Russian)

    Google Scholar 

  9. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  10. Kohr, M.: Boundary value problems for a compressible Stokes system in bounded domains in R n. J. Comput. Appl. Math. 201, 128–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Král, J.: Integral Operators in Potential Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  12. Král, J., Netuka, I.: Contractivity of C. Neumann’s operator in potential theory. J. Math. Anal. Appl. 61, 607–619 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ladyzenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York/London/Paris (1969)

    Google Scholar 

  14. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unital close to VMO. Funct. Anal. Appl. 43, 217–235 (2009)

    Article  MathSciNet  Google Scholar 

  15. Medková, D.: The Neumann problem for the Laplace equation on general domains. Czechoslov. Math. J. 57, 1107–1139 (2007)

    Article  MATH  Google Scholar 

  16. Medková, D.: The integral equation method and the Neumann problem for the Poisson equation on NTA domains. Integral Equ. Oper. Theory 63, 227–247 (2009)

    Article  MATH  Google Scholar 

  17. Medková, D.: Integral representation of a solution of the Neumann problem for the Stokes system. Numer. Algorithms 54, 459–484 (2010). doi:10.1007/s11075-9346-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, V.: Spectral Theorey of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory Advances and Applications. Birkhäuser, Basel (2007)

    Google Scholar 

  19. Neumann, C.: Untersuchungen über das logarithmische und Newtonsche Potential. Teubner, Leipzig (1877)

    Google Scholar 

  20. Neumann, C.: Zur Theorie des logarithmischen und des Newtonschen Potentials. Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig 22, 49–56, 264–321 (1870)

  21. Neumann, C.: Über die Methode des arithmetischen Mittels. Hirzel, Leipzig (1887)

    Google Scholar 

  22. Plemelj, J.: Potentialtheoretische Untersuchungen. Teubner, Leipzig (1911)

    MATH  Google Scholar 

  23. Reidinger, B., Steinbach, O.: A symmetric boundary element method for the Stokes problem in multiple connected domains. Math. Methods Appl. Sci. 26, 77–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002)

    Google Scholar 

  25. Shibata, Y., Shimizu, S.: On the L p L q maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008)

    Book  MATH  Google Scholar 

  27. Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262, 733–748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wendland, W.L.: On the double layer potential. Adv. Appl. 193, 319–334 (2009)

    MathSciNet  Google Scholar 

  31. Yosida, K.: Functional Analysis. Springer, Berlin (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Medková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medková, D. Convergence of the Neumann Series in BEM for the Neumann Problem of the Stokes System. Acta Appl Math 116, 281–304 (2011). https://doi.org/10.1007/s10440-011-9643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-011-9643-5

Keywords

Mathematics Subject Classification (2000)

Navigation