Skip to main content
Log in

Primal necessary characterizations of transversality properties

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This paper continues the study of general nonlinear transversality properties of collections of sets and focuses on primal necessary (in some cases also sufficient) characterizations of the properties. We formulate geometric, metric and slope characterizations, particularly in the convex setting. The Hölder case is given a special attention. Quantitative relations between the nonlinear transversality properties of collections of sets and the corresponding regularity properties of set-valued mappings as well as two nonlinear transversality properties of a convex set-valued mapping to a convex set in the range space are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Am. Math. Soc. 357(10), 3831–3863 (2005). https://doi.org/10.1090/S0002-9947-05-03945-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property \((G)\), and error bounds in convex optimization. Math. Progr., Ser. A 86(1), 135–160 (1999). https://doi.org/10.1007/s101070050083

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order descent methods for convex functions. Math. Progr., Ser. A 165(2), 471–507 (2017). https://doi.org/10.1007/s10107-016-1091-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Li, G., Tam, M.K.: Convergence rate analysis for averaged fixed point iterations in common fixed point problems. SIAM J. Optim. 27(1), 1–33 (2017). https://doi.org/10.1137/15M1045223

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M., Li, G., Yao, L.: Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim. 24(1), 498–527 (2014). https://doi.org/10.1137/130919052

    Article  MathSciNet  MATH  Google Scholar 

  7. Bui, H.T., Cuong, N.D., Kruger, A.Y.: Transversality of collections of sets: geometric and metric characterizations. Vietnam J. Math. 48(2), 277–297 (2020). https://doi.org/10.1007/s10013-020-00388-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuong, T.D.: Metric regularity of a positive order for generalized equations. Appl. Anal. 94(6), 1270–1287 (2015). https://doi.org/10.1080/00036811.2014.930821

    Article  MathSciNet  MATH  Google Scholar 

  9. Chuong, T.D.: Stability of implicit multifunctions via point-based criteria and applications. J. Optim. Theory Appl. 183(3), 920–943 (2019). https://doi.org/10.1007/s10957-019-01562-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Cibulka, R., Fabian, M., Kruger, A.Y.: On semiregularity of mappings. J. Math. Anal. Appl. 473(2), 811–836 (2019). https://doi.org/10.1016/j.jmaa.2018.12.071

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuong, N.D., Kruger, A.Y.: Dual sufficient characterizations of transversality properties. Positivity (2020). https://doi.org/10.1007/s11117-019-00734-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Cuong, N.D., Kruger, A.Y.: Nonlinear transversality of collections of sets: dual space necessary characterizations. J. Convex Anal. 27(1), 287–308 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Cuong, N.D., Kruger, A.Y.: Transversality properties: primal sufficient conditions. Set-Valued Var. Anal. (2020). https://doi.org/10.1007/s11228-020-00545-1

    Article  Google Scholar 

  14. Dao, M.N., Phan, H.M.: Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems. J. Global Optim. 72(3), 443–474 (2018). https://doi.org/10.1007/s10898-018-0654-x

    Article  MathSciNet  MATH  Google Scholar 

  15. Dao, M.N., Phan, H.M.: Linear convergence of projection algorithms. Math. Oper. Res. 44(2), 715–738 (2019). https://doi.org/10.1287/moor.2018.0942

    Article  MathSciNet  MATH  Google Scholar 

  16. De Giorgi, E., Marino, A., Tosques, M.: Evolution problerns in in metric spaces and steepest descent curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187. In: Italian. English translation: Ennio De Giorgi, Selected Papers. Springer, Berlin 2006, pp. 527–533 (1980)

  17. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2 edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-1037-3

  18. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015). https://doi.org/10.1007/s10208-015-9279-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Drusvyatskiy, D., Li, G., Wolkowicz, H.: A note on alternating projections for ill-posed semidefinite feasibility problems. Math. Progr., Ser. A 162(1–2), 537–548 (2017). https://doi.org/10.1007/s10107-016-1048-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18(2), 121–149 (2010)

    Article  MathSciNet  Google Scholar 

  21. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). https://doi.org/10.1137/120902653

    Article  MathSciNet  MATH  Google Scholar 

  22. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000). https://doi.org/10.1070/rm2000v055n03ABEH000292

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe, A.D.: Metric regularity—a survey. Part I. Theory J. Aust. Math. Soc. 101(2), 188–243 (2016). https://doi.org/10.1017/S1446788715000701

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.D.: Variational Analysis of Regular Mappings. Theory and Applications. Springer Monographs in Mathematics. Springer (2017). https://doi.org/10.1007/978-3-319-64277-2

  25. Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1(1), 101–126 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14(2), 187–206 (2006). https://doi.org/10.1007/s11228-006-0014-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13(6A), 1737–1785 (2009). https://doi.org/10.11650/twjm/1500405612

    Article  MathSciNet  MATH  Google Scholar 

  28. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015). https://doi.org/10.1080/02331934.2014.938074

    Article  MathSciNet  MATH  Google Scholar 

  29. Kruger, A.Y.: About intrinsic transversality of pairs of sets. Set-Valued Var. Anal. 26(1), 111–142 (2018). https://doi.org/10.1007/s11228-017-0446-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 25(4), 701–729 (2017). https://doi.org/10.1007/s11228-017-0436-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Kruger, A.Y., Luke, D.R., Thao, N.H.: Set regularities and feasibility problems. Math. Progr., Ser. B 168(1–2), 279–311 (2018). https://doi.org/10.1007/s10107-016-1039-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Kruger, A.Y., Thao, N.H.: About \([q]\)-regularity properties of collections of sets. J. Math. Anal. Appl. 416(2), 471–496 (2014). https://doi.org/10.1016/j.jmaa.2014.02.028

    Article  MathSciNet  MATH  Google Scholar 

  33. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164(1), 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009). https://doi.org/10.1007/s10208-008-9036-y

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, G.: Global error bounds for piecewise convex polynomials. Math. Progr. 137(1–2, Ser. A), 37–64 (2013). https://doi.org/10.1007/s10107-011-0481-z

    Article  MathSciNet  MATH  Google Scholar 

  36. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

  37. Ng, K.F., Zang, R.: Linear regularity and \(\phi \)-regularity of nonconvex sets. J. Math. Anal. Appl. 328(1), 257–280 (2007). https://doi.org/10.1016/j.jmaa.2006.05.028

    Article  MathSciNet  MATH  Google Scholar 

  38. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9(1–2), 187–216 (2001). https://doi.org/10.1023/A:1011291608129

    Article  MathSciNet  MATH  Google Scholar 

  39. Ngai, H.V., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of metric regularity. SIAM J. Optim. 19(1), 1–20 (2008). https://doi.org/10.1137/060675721

    Article  MathSciNet  MATH  Google Scholar 

  40. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016). https://doi.org/10.1007/s10208-015-9253-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4538-8

  42. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  43. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19(1), 62–76 (2008). https://doi.org/10.1137/060659132

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73(2), 413–430 (2010). https://doi.org/10.1016/j.na.2010.03.032

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for the careful reading of the manuscript and their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by the Australian Research Council, Project DP160100854. The second author benefited from the support of the FMJH Program PGMO and from the support of EDF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuong, N.D., Kruger, A.Y. Primal necessary characterizations of transversality properties. Positivity 25, 531–558 (2021). https://doi.org/10.1007/s11117-020-00775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-020-00775-5

Keywords

Mathematics Subject Classification

Navigation