Skip to main content
Log in

Multivariate coherent risk measures induced by multivariate convex risk measures

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper, we study the close relationship between multivariate coherent and convex risk measures. Namely, starting from a multivariate convex risk measure, we propose a family of multivariate coherent risk measures induced by it. In return, the convex risk measure can be represented by its induced coherent risk measures. The representation result for the induced coherent risk measures is given in terms of the minimal penalty function of the convex risk measure. Finally, an example is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzner, P., Dellbaen, F., Eber, J.M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)

    Google Scholar 

  2. Artzner, P., Dellbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  3. Burgert, C., Rüschendorf, L.: Consistent risk measures for portfolio vectors. Insurance Math. Econ. 38, 289–297 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cascos, I., Molchanov, I.: Multivariate risks and depth-trimmed regions. Finance Stoch. 11(3), 373–397 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.P., Hu, Q.H.: On coherent risk measures induced by convex risk measures. Methodol. Comput. Appl. Prob. 20(2), 673–698 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y.H., Hu, Y.J.: Set-valued risk statistics with scenario analysis. Stat. Prob. Lett. 131, 25–37 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.H., Sun, F., Hu, Y.J.: Coherent and convex loss-based risk measures for portfolio vectors. Positivity 22, 399–414 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ekeland, I., Schachermayer, W.: Law invariant risk measures on \(L^{\infty }(\mathbf{R}^d)\). Stat. Risk Model. 28(3), 195–225 (2011)

    Article  MathSciNet  Google Scholar 

  9. Ekeland, I., Schachermayer, W.: Comonotonic measures of multivariate risks. Math. Finance 22(1), 109–132 (2012)

    Article  MathSciNet  Google Scholar 

  10. Farkas, W., Koch-Medina, P., Munari, C.: Measuring risk with multiple eligible assets. Math. Financ. Econ. 9(1), 3–27 (2015)

    Article  MathSciNet  Google Scholar 

  11. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002)

    Article  Google Scholar 

  12. Föllmer, H., Schied, A.: Convex measures of risk and trading constrains. Finance Stoch. 6, 429–447 (2002)

    Article  MathSciNet  Google Scholar 

  13. Föllmer, H., Knispel, T.: Entropic risk measures: coherence vs. convexity, model ambiguity, and robust large deviations. Stoch. Dyn. 11, 333–351 (2011)

    Article  MathSciNet  Google Scholar 

  14. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. De Gruyter Studies in Mathematics, vol. 27, 4th edn. Walter de Gruyter, Berlin (2016)

    Book  Google Scholar 

  15. Hamel, A.H.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set Valued Var. Anal. 17(2), 153–182 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. Soc. Ind. Appl. Math. 1, 66–95 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5(1), 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)

    Article  MathSciNet  Google Scholar 

  19. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms (Two Volumes). Springer, Berlin (1993)

    MATH  Google Scholar 

  20. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8(4), 531–552 (2004)

    Article  MathSciNet  Google Scholar 

  21. Labuschagne, C.C.A., Offwood-Le Roux, T.M.: Representations of set-valued risk measures definded on the \(l\)-tensor product of Banach lattices. Positivity 18(3), 619–639 (2014)

    Article  MathSciNet  Google Scholar 

  22. Molchanov, I., Cascos, I.: Multivariate risk measures: a constructive approach based on selections. Math. Finance 26(4), 867–900 (2016)

    Article  MathSciNet  Google Scholar 

  23. Rüschendorf, L.: Mathematical Risk Analysis. Spring, New York (2013)

    Book  Google Scholar 

  24. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  25. Wei, L.X., Hu, Y.J.: Coherent and convex risk measures for portfolios with applications. Stat. Prob. Lett. 90, 114–120 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editors and the anonymous referees for their valuable and constructive comments and suggestions which led to the present greatly improved version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Fundamental Research Funds for the Central Universities (No. 531107051210) and the National Natural Science Foundation of China (Nos. 11771343, 11901184).

Appendix

Appendix

The following Lemma A.1 is an immediate corollary of Hiriart-Urruty and Lemaréchal [19, Proposition 2.2.1].

Lemma A.1

Let \(\rho : {\mathscr {X}}^N \rightarrow (-\infty , +\infty ]\) be a convex function, then \(F: {\mathscr {X}}^N \times {\mathbf {R}}_{++} \rightarrow (-\infty , +\infty ]\) with \(F({\mathbf {M}}, t) := t \rho (t^{-1}{\mathbf {M}})\) for any \({\mathbf {M}} \in {\mathscr {X}}^N\) and \(t \in {\mathbf {R}}_{++}\) is jointly convex in \({\mathbf {M}}\) and t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hu, Y. Multivariate coherent risk measures induced by multivariate convex risk measures. Positivity 24, 711–727 (2020). https://doi.org/10.1007/s11117-019-00703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-019-00703-2

Keywords

Mathematics Subject Classification

Navigation