, Volume 15, Issue 4, pp 661–676 | Cite as

Envelopes and inequalities in vector lattices

  • A. G. KusraevEmail author
  • S. S. Kutateladze


The aim of this paper is to obtain a version of continuous functional calculus and some new envelope representation results in vector lattices as well as to indicate some applications.


Vector lattice Functional calculus Envelope representation Convexity inequality Sublinear operator Superlinear operator Polyhedral operator Interval operator Interval analysis Subdifferential 

Mathematics Subject Classification (2000)

47A60 47B65 46A63 65G40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kusraev A.G.: Functional calculus and Minkowski duality on vector lattices. Vladikavkaz. Math. J. 11(2), 31–42 (2009)MathSciNetGoogle Scholar
  2. 2.
    Kusraev, A.G.: Homogeneous Functional Calculus on Vector Lattices. Inst. Appl. Math. Inf. Vladikavkaz (2008)Google Scholar
  3. 3.
    Kusraev A.G.: Inequalities in vector lattices. In: Korobeĭnik, Yu.F., Kusraev, A.G. (eds) Studies on Mathematical Analysis, Differential Equations, and Their Applications, pp. 82–96. Southern Math. Inst., Vladikavkaz (2010)Google Scholar
  4. 4.
    Haase M.: Convexity inequalities for positive operators. Positivity. 11(1), 57–68 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kutateladze S.S.: The Farkas lemma revisited. Siber. Math. J. 51(1), 78–87 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, London (1985)zbMATHGoogle Scholar
  7. 7.
    Kusraev A.G.: Dominated Operators. Kluwer Academic Publ., Dordrecht (2000)zbMATHGoogle Scholar
  8. 8.
    Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kusraev A.G., Kutateladze S.S.: Subdifferentials: Theory and Applications. Kluwer Academic Publ., Dordrecht (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Buskes G., de Pagter B., van Rooij A.: Functional calculus on Riesz spaces. Indag. Math. 4(2), 423–436 (1991)CrossRefGoogle Scholar
  11. 11.
    Lozanovskiĭ G.Ya.: The functions of elements of vector lattices. Izv. Vyssh. Uchebn. Zaved. Mat. 4, 45–54 (1973)Google Scholar
  12. 12.
    Kutateladze S.S.: Fundamentals of functional analysis. Kluwer Academic Publ., Dordrecht (1996)Google Scholar
  13. 13.
    Rockafellar R.T.: Convex Analysis. Princeton Univ. Press, Princeton (1970)zbMATHGoogle Scholar
  14. 14.
    Kutateladze S.S., Rubinov A.M.: Minkowski Duality and Its Applications. Nauka Publ., Novosibirsk (1976)Google Scholar
  15. 15.
    Pečarić J.E., Proschan F., Tong Y.L.: Convex Functions, Partial Orderings, and Statistical Application. Academic Press, Boston (1992)Google Scholar
  16. 16.
    Peetre, J., Persson, L.-E.: A general Beckenbach’s inequality with applications. In: Differential Operators and Nonlinear Analysis. Pitman Res. Notes Math., Ser. vol. 211, pp. 125–139 (1989)Google Scholar
  17. 17.
    Persson L.-E.: Generalizations of some classical inequalities and their applications. In: Krbec, M., Kufner, A., Opic, B., Rákosník, J. (eds) Nonlinear Analysis, Function Spaces and Applications, pp. 127–148. Teubner, Leipzig (1990)Google Scholar
  18. 18.
    Varošanec S.: A generalized Beckenbach–Dresher inequality. Banach J. Math. Anal. 4(1), 13–20 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mitrinović D.S., Pečarić J.E., Fink A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publ., Dordrecht (1993)zbMATHGoogle Scholar
  20. 20.
    Pečarić J.E., Beesack P.R.: On Jessen’s inequality for convex functions, II. J. Math. Anal. Appl. 118, 125–144 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Fiedler M. et al.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)zbMATHGoogle Scholar
  22. 22.
    Kutateladze S.S.: Boolean trends in linear inequalities. J. Appl. Ind. Math. 4(3), 340–348 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Vladikavkaz Scientific Center of the Russian Academy of SciencesSouthern Mathematical InstituteVladikavkazRussia
  2. 2.Siberian Division of the Russian Academy of SciencesSobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations