Skip to main content
Log in

Marcinkiewicz–Zygmund inequalities in variable Lebesgue spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

We study \(\ell ^r\)-valued extensions of linear operators defined on Lebesgue spaces with variable exponent. Under some natural (and usual) conditions on the exponents, we characterize \(1\le r\le \infty \) such that every bounded linear operator \(T:L^{q(\cdot )}(\Omega _2, \mu )\rightarrow L^{p(\cdot )}(\Omega _1, \nu )\) has a bounded \(\ell ^r\)-valued extension. We consider both non-atomic measures and measures with atoms and show the differences that can arise. We present some applications of our results to weighted norm inequalities of linear operators and vector-valued extensions of fractional operators with rough kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Carando, D., Mazzitelli, M., Ombrosi, S.: Multilinear Marcinkiewicz–Zygmund inequalities. J. Fourier Anal. Appl. 25, 51–85 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  3. Cheng, C., Xu, J.: Geometric properties of Banach space valued Bochner–Lebesgue spaces with variable exponent. J. Math. Inequal. 7(3), 461–475 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer Science & Business Media, Berlin (2013)

    Book  Google Scholar 

  5. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

    MathSciNet  Google Scholar 

  6. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Extrapolation from \(A_{\infty }\) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, vol. 215. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  8. Cruz-Uribe, D., Wang, L.A.D.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Am. Math. Soc. 369(2), 1205–1235 (2017)

    Article  MathSciNet  Google Scholar 

  9. Defant, A., Junge, M.: Best constants and asymptotics of Marcinkiewicz–Zygmund inequalities. Stud. Math. 125(3), 271–287 (1997)

    MathSciNet  Google Scholar 

  10. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    Book  Google Scholar 

  11. Edmunds, D.E., Lang, J., Nekvinda, A.: On \(L^{p(x)}\) norms. Proc. Roy. Soc. Lond. A 455, 219–225 (1999)

    Article  Google Scholar 

  12. García-Cuerva, J.: Factorization of operators and weighted norm inequalities. In: Nonlinear Analysis, Function Spaces and Applications Vol. 4: Proceedings of the Spring School held in Roudnice nad Labem, pp. 5–41 (1990)

  13. García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. In: North-Holland Math. Stud., vol. 116. North-Holland, Amsterdam (1985)

    Google Scholar 

  14. Gasch, J., Maligranda, L.: On vector-valued inequalities of Marcinkiewicz–Zygmund, Herz and Krivine type. Math. Nachr. 167, 95–129 (1994)

    Article  MathSciNet  Google Scholar 

  15. Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18(4), 283–323 (1968)

    MathSciNet  Google Scholar 

  16. Izuki, M.: Vector-valued inequalities on Herz spaces and characterizations of Herz–Sobolev spaces with variable exponent. Glas. Mat. III. Ser. 45(2), 475–503 (2010)

    Article  MathSciNet  Google Scholar 

  17. Junge, M.: Hyperplane conjecture for quotient spaces of \(L_p\). Forum Math. 6, 617–635 (1994)

    Article  MathSciNet  Google Scholar 

  18. Kamińska, A.: Indices, convexity and concavity in Musielak–Orlicz spaces. Funct. Approx. Comment. Math. 26, 67–84 (1998)

    MathSciNet  Google Scholar 

  19. Kovácik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(4), 592–618 (1991)

    Article  Google Scholar 

  20. Marcinkiewicz, J., Zygmund, A.: Quelques inégalités pour les opérations linéaires. Fund. Math. 32, 113–121 (1939)

    Article  Google Scholar 

  21. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo (1950)

    Google Scholar 

  22. Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co., Ltd., Tokyo (1951)

    Google Scholar 

  23. Pietsch, A.: Operator Ideals. North-Holland Publishing Co., Amsterdam (1980)

    Google Scholar 

  24. Rafeiro, H., Samko, S.: On maximal and potential operators with rough kernels in variable exponent spaces. Rend. Lincei Mat. Appl. 27, 309–325 (2016)

    MathSciNet  Google Scholar 

  25. Rubio de Francia, J.L., Torrea, J.L.: Vector extensions of operators in \(L^p\) spaces. Pac. J. Math. 105(1), 227–235 (1983)

    Article  Google Scholar 

  26. Sánchez, Pérez. E., Tradacete, P.: \(p\)-regularity and weights for operators between \(L^p\)-spaces. Z. Anal. Anwend. 39(1), 41–65 (2020)

    Article  MathSciNet  Google Scholar 

  27. Sharapudinov, I.I.: On the topology of the space \(L^{p(t)}([0; 1])\). Math. Notes 26(3–4), 796–806 (1979)

    Article  Google Scholar 

  28. Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43(1), 187–204 (1994)

    Article  MathSciNet  Google Scholar 

  29. Tsenov, I.V.: Generalization of the problem of best approximation of a function in the space \(l^s\). Uch. Zap. Dagestan Gos. Univ. 7, 25–37 (1961)

    Google Scholar 

Download references

Acknowledgements

We want to thank our friend Sheldy Ombrosi for useful conversations and comments regarding this work. We also thank the anonymous referees for many suggestions and comments that helped to improve the manuscript. Finally, we gratefully acknowledge the support provided by the scientific system of Argentina. Furthermore, we wish to express our concern regarding the ongoing defunding that universities and scientific agencies are currently facing. This work was partially supported by CONICET PIP 11220200102366CO, ANPCyT PICT 2018-04104, and UNCOMA PIN I 04/B251. The first author has a doctoral fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mazzitelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Manuel Maestre.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonich, M., Carando, D. & Mazzitelli, M. Marcinkiewicz–Zygmund inequalities in variable Lebesgue spaces. Banach J. Math. Anal. 18, 36 (2024). https://doi.org/10.1007/s43037-024-00344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-024-00344-y

Keywords

Mathematics Subject Classification

Navigation