Skip to main content
Log in

Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

According to the residential self-selection hypothesis in transportation planning, individual characteristics centering on sociodemographics and attitudes have been conceptualized as antecedent confounders in the built environment–travel behavior relationship (and subsequently, the built environment as a mediator). In medical science, socio-ecological models have been used to designate the individual characteristics and built environment to mutually function as moderators. However, whether individual characteristics (built environment) assume the role of the antecedent (mediator), moderator, or control, has received scant scholarly attention. Using a structural equation model based on the total travel time data of Seoul, this study finds that, by mode of travel, sociodemographics work as moderators for automobile travel and attitudes as antecedents for nonmotorized travel. The sociodemographics/attitudes and built environment are likely to be significant only if their counterpart is also significant. Demographically, the compact built environment tends to reduce automobile travel only for older residents and those who live in larger households. Moreover, travelers with positive attitudes toward daily facilities may self-select into compact neighborhoods and subsequently increase nonmotorized travel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

Not applicable.

Notes

  1. If the individual characteristics are moderators in the built environment–travel relationship (for example, a compact built environment may be effective in increasing active travel only for males), then, the built environment simultaneously works as a moderator in the individual characteristics–travel relationship (the gender difference on active travel is significant only in compact built environment settings).

  2. Previous studies have often measured attitudes toward travel modes (Gao et al. 2019) or the built environment (Haybatollahi et al. 2015), but rarely both.

  3. According to the RSS hypothesis, partial mediation is usually specified and empirically supported, that is, not only their indirect effect through the built environment choice, but also the direct effect of the individual characteristics on travel behavior. For example, car lovers are inclined to move to suburban areas to meet their diving demands (indirect effect) but, no matter where they live, their automobile preference by itself is expected to increase automobile travel (direct effect).

  4. Several studies (e.g., Bohte et al. 2009; Mokhtarian and Cao 2008) considered that, even from the RSS perspective, the built environment can influence attitudes (not only directly, but also indirectly through the built environment–travel behavior–attitudes path) in the long-term learning process or for the justification of residential choices (i.e., to reduce mismatches between travel attitudes and given travel options in the neighborhood), thereby suggesting a possible reciprocal causation (Gim 2016; Van Wee et al. 2019). In fact, the reciprocal causation potential has been empirically supported by natural experimental (e.g., De Vos et al. 2018; Lin et al. 2017) and longitudinal (e.g., Van de Coevering et al. 2018, 2021) studies. For example, through a natural experiment, Lin et al. (2017) identified this reciprocal causation for people with the possibility of residential self-selection and the one-way effect of the built environment on attitudes (i.e., reverse effect of residential self-selection) for those without this possibility. Likewise, De Vos et al. (2018) employed a cohort approach and found that attitudes as well as travel mode choices are adjusted by the new built environment after residential relocation. More recently, based on longitudinal SEM, Van de Coevering et al. (2021) confirmed both directions of the attitudes–built environment relationship. Also in theory, based on associations among the built environment, attitudes, and travel behavior, Cao et al. (2009) differently conceptualized the role of attitudes as (1) complete confounder (i.e., attitudes fully explain the observed built environment–travel relationship), (2) mediator of the relationship, (3) mediator of the reverse relationship, and (4) shared correlate with both. Extending these conceptual relationships, Heinen et al. (2018) further suspected attitudes as (5) predictor of travel behavior, (6) partial confounder (i.e., attitudes strengthens/weakens the observed built environment–travel relationship), and (7) antecedent of the relationship. According to Heinen et al. (2018), this study deals with the “classical example of residential self-selection” (p. 943), that is, (1) and (7) (full and partial mediation of the built environment).

  5. Four core principles of socio-ecological models are as follows (Sallis et al. 2008). (1) Health behavior results from multiple levels of determinants. (2) The determinants interact across these levels. (3) Multi-level interventions are the most useful for behavioral changes. (4) The models are required to be customized to specific behavior according to which different determinants should be identified at each level.

  6. The formative component is a component that is defined by indicators, while for the reflective component, an indicator is just one of numerous phenotypes of the latent variable. If two or more sociodemographic indicators have conceptual correlations (e.g., income and education), a representative one is selected for the formative component. Otherwise, the correlations lead to unstable coefficients and large standard errors.

  7. As significant predictor–mediator and mediator–outcome paths are simply a prerequisite before establishing the mediating relationship, previous studies have tended base their decision using only the two significant paths (Hair et al. 2017; Zhao et al. 2010).

  8. Thus, the findings of this study do not apply to the underaged population in Seoul and those who are unregistered (e.g., short-staying inbound tourists and illegal immigrants).

  9. Other survey items that were not used in this study include the perceived importance of the mechanical characteristics of different travel modes (e.g., convenience, comfort, safety, and privacy).

  10. The automobile models used the data of automobile travelers as drivers of private vehicles, that is, automobile travelers as passengers and drivers of shared vehicles were not considered.

  11. As a rule of thumb for the minimum sample size for PLS-SEM, Hair et al. (2011) suggested the larger of the following two: (1) 10 times the largest number of formative indicators for a component and (2) 10 times the largest number of structural paths to a component. As shown in Figs. 4, 5, 6 and 7, the largest numbers of formative indicators and structural paths in this study are 80 (= 8 sociodemographic indicators * 10) and 50 (= 5 paths to the travel behavior component in the moderation models * 10), respectively, and the sample size was required to be a minimum of 80. Meanwhile, regardless of such a rule of thumb, much smaller samples have often been used for PLS-SEM (see Aibinu and Al-Lawati 2010; Tenenhaus et al. 2005). In their simulation study on the sample size, Henseler et al. (2014) concluded that PLS-SEM functions well even in cases in which the numbers of indicators/components and paths exceed the sample size.

References

  • Aibinu, A.A., Al-Lawati, A.M.: Using PLS-SEM technique to model construction organizations’ willingness to participate in e-bidding. Autom. Constr. 19(6), 714–724 (2010). https://doi.org/10.1016/j.autcon.2010.02.016

    Article  Google Scholar 

  • Ball, K., Timperio, A., Salmon, J., Giles-Corti, B., Roberts, R., Crawford, D.: Personal, social and environmental determinants of educational inequalities in walking: a multilevel study. J. Epidemiol. Community Health 61(2), 108–114 (2007). https://doi.org/10.1136/jech.2006.048520

    Article  Google Scholar 

  • Banister, D., Watson, S., Wood, C.: Sustainable cities: transport, energy, and urban form. Environ. Plan. B 24(1), 125–144 (1997)

    Article  Google Scholar 

  • Baron, R.M., Kenny, D.A.: The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51(6), 1173–1182 (1986). https://doi.org/10.1037/0022-3514.51.6.1173

    Article  Google Scholar 

  • Bauman, A.E., Sallis, J.F., Dzewaltowski, D.A., Owen, N.: Toward a better understanding of the influences on physical activity: the role of determinants, correlates, causal variables, mediators, moderators, and confounders. Am. J. Prev. Med. 23(2), 5–14 (2002). https://doi.org/10.1016/S0749-3797(02)00469-5

    Article  Google Scholar 

  • Beenackers, M.A., Kamphuis, C.B.M., Prins, R.G., Mackenbach, J.P., Burdorf, A., Van Lenthe, F.J.: Urban form and psychosocial factors: do they interact for leisure-time walking? Med. Sci. Sports Exerc. 46(2), 293–301 (2014)

    Article  Google Scholar 

  • Bhat, C.R., Guo, J.Y.: A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transp. Res. Part b Methodol. 41(5), 506–526 (2007). https://doi.org/10.1016/j.trb.2005.12.005

    Article  Google Scholar 

  • Boarnet, M., Crane, R.: The influence of land use on travel behavior: specification and estimation strategies. Transp. Res. A 35(9), 823–845 (2001)

    Google Scholar 

  • Bohte, W., Maat, K., van Wee, B.: Measuring attitudes in research on residential self-selection and travel behaviour: a review of theories and empirical research. Transp. Rev. 29(3), 325–357 (2009)

    Article  Google Scholar 

  • Brown, B.B., Yamada, I., Smith, K.R., Zick, C.D., Kowaleski-Jones, L., Fan, J.X.: Mixed land use and walkability: variations in land use measures and relationships with BMI, overweight, and obesity. Health Place 15(4), 1130–1141 (2009)

    Article  Google Scholar 

  • Cao, X.: Exploring causal effects of neighborhood type on walking behavior using stratification on the propensity score. Environ. Plan A 42(2), 487–504 (2010). https://doi.org/10.1068/a4269

    Article  Google Scholar 

  • Cao, X., Handy, S.L., Mokhtarian, P.L.: The influences of the built environment and residential self-selection on pedestrian behavior: evidence from Austin. TX. Transp. 33(1), 1–20 (2006). https://doi.org/10.1007/s11116-005-7027-2

    Article  Google Scholar 

  • Cao, X., Mokhtarian, P.L., Handy, S.L.: Do changes in neighborhood characteristics lead to changes in travel behavior? A Struct. Equ. Model. Approach. Transp. 34(5), 535–556 (2007)

    Google Scholar 

  • Cao, X., Mokhtarian, P.L., Handy, S.L.: Examining the impacts of residential self-selection on travel behaviour: a focus on empirical findings. Transp. Rev. 29(3), 359–395 (2009)

    Article  Google Scholar 

  • Cao, X., Xu, Z., Fan, Y.: Exploring the connections among residential location, self-selection, and driving: propensity score matching with multiple treatments. Transp. Res. Part a Policy Pract. 44(10), 797–805 (2010). https://doi.org/10.1016/j.tra.2010.07.010

    Article  Google Scholar 

  • Cao, X.: Disentangling the influence of neighborhood type and self-selection on driving behavior: an application of sample selection model. Transportation 36(2), 207–222 (2009). http://link.springer.com/journal/volumesAndIssues/11116

  • Carlson, J.A., Sallis, J.F., Conway, T.L., Saelens, B.E., Frank, L.D., Kerr, J., Cain, K.L., King, A.C.: Interactions between psychosocial and built environment factors in explaining older adults’ physical activity. Prev. Med. 54(1), 68–73 (2012). https://doi.org/10.1016/j.ypmed.2011.10.004

    Article  Google Scholar 

  • Carlson, J.A., Bracy, N.L., Sallis, J.F., Millstein, R.A., Saelens, B.E., Kerr, J., Conway, T.L., Frank, L.D., Cain, K.L., King, A.C.: Sociodemographic moderators of relations of neighborhood safety to physical activity. Med. Sci. Sports Exerc. 46(8), 1554–1563 (2014). https://doi.org/10.1249/mss.0000000000000274

    Article  Google Scholar 

  • Carrión, G.C., Nitzl, C., Roldán, J.L.: Mediation analyses in partial least squares structural equation modeling: guidelines and empirical examples. In: Latan, H., Noonan, R. (eds.) Partial Least Squares Path Modeling. Springer, Cham, Switzerland (2017)

  • Chan, E.T.H.: The influence of the built environment on neighbourhood-level walking behaviour and experience: a case study of Shenzhen. University of Oxford (2020)

  • Cohen, J., Cohen, P., Aiken, L.S., West, S.H.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. L. Erlbaum Associates, Hillsdale, NJ (2003)

  • Colabianchi, N., Clennin, M.N., Dowda, M., McIver, K.L., Dishman, R.K., Porter, D.E., Pate, R.R.: Moderating effect of the neighbourhood physical activity environment on the relation between psychosocial factors and physical activity in children: a longitudinal study. J. Epidemiol. Community Health 73(7), 598–604 (2019). https://doi.org/10.1136/jech-2018-211456

    Article  Google Scholar 

  • Crane, R.: The influence of urban form on travel: an interpretive review. J. Plan. Lit. 15(1), 3–23 (2000). https://doi.org/10.1177/08854120022092890

    Article  Google Scholar 

  • D’Angelo, H., Fowler, S.L., Nebeling, L.C., Oh, A.Y.: Adolescent physical activity: moderation of individual factors by neighborhood environment. Am. J. Prev. Med. 52(6), 888–894 (2017). https://doi.org/10.1016/j.amepre.2017.01.013

    Article  Google Scholar 

  • De Abreu e Silva, J., Golob, T.F., Goulias, K.G.: Effects of land use characteristics on residence and employment location and travel behavior of urban adult workers. Transp. Res. Record 17, 121–131 (2006)

    Article  Google Scholar 

  • De Meester, F., Van Dyck, D., De Bourdeaudhuij, I., Deforche, B., Cardon, G.: Do psychosocial factors moderate the association between neighborhood walkability and adolescents’ physical activity? Soc. Sci. Med. 81, 1–9 (2013). https://doi.org/10.1016/j.socscimed.2013.01.013

    Article  Google Scholar 

  • De Vos, J., Derudder, B., Van Acker, V., Witlox, F.: Reducing car use: changing attitudes or relocating? the influence of residential dissonance on travel behavior. J. Transp. Geogr. 22, 1–9 (2012). https://doi.org/10.1016/j.jtrangeo.2011.11.005

    Article  Google Scholar 

  • De Vos, J., Ettema, D., Witlox, F.: Changing travel behaviour and attitudes following a residential relocation. J. Transp. Geogr. 73, 131–147 (2018). https://doi.org/10.1016/j.jtrangeo.2018.10.013

    Article  Google Scholar 

  • Ding, D., Gebel, K.: Built environment, physical activity, and obesity: what have we learned from reviewing the literature? Health Place 18(1), 100–105 (2012). https://doi.org/10.1016/j.healthplace.2011.08.021

    Article  Google Scholar 

  • Eisenberg, Y., Vanderbom, K.A., Vasudevan, V.: Does the built environment moderate the relationship between having a disability and lower levels of physical activity? Syst. Rev. Prev. Med. 95, S75–S84 (2017). https://doi.org/10.1016/j.ypmed.2016.07.019

    Article  Google Scholar 

  • Ewing, R., Cervero, R.: Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc. 76(3), 265–294 (2010)

    Article  Google Scholar 

  • Ewing, R., Bartholomew, K., Winkelman, S., Walters, J., Chen, D.: Growing cooler evidence on urban development and climate change. In. Urban Land Institute, Washington, D.C. (2008)

    Google Scholar 

  • Fink, M., Harms, R., Kraus, S.: Cooperative internationalization of SMEs: self-commitment as a success factor for International Entrepreneurship. Eur. Manag. J. 26(6), 429–440 (2008). https://doi.org/10.1016/j.emj.2008.09.003

    Article  Google Scholar 

  • Forsyth, A., Michael Oakes, J., Lee, B., Schmitz, K.H.: The built environment, walking, and physical activity: Is the environment more important to some people than others? Transp. Res. Part d: Transp. Environ. 14(1), 42–49 (2009). https://doi.org/10.1016/j.trd.2008.10.003

    Article  Google Scholar 

  • Frank, L.D., Saelens, B.E., Powell, K.E., Chapman, J.E.: Stepping towards causation: do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Soc. Sci. Med. 65(9), 1898–1914 (2007). https://doi.org/10.1016/j.socscimed.2007.05.053

    Article  Google Scholar 

  • Gao, J., Ettema, D., Helbich, M., Kamphuis, C.B.M.: Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes? Transportation 46(6), 2441–2463 (2019). https://doi.org/10.1007/s11116-019-10005-x

    Article  Google Scholar 

  • Gim, T.-H.T.: Influences on trip frequency according to travel purposes: a structural equation modeling approach in Seoul, South Korea. Environ. Plann. b. Plann. Des. 38(3), 429–446 (2011)

    Article  Google Scholar 

  • Gim, T.-H.T.: A meta-analysis of the relationship between density and travel behavior. Transportation 39(3), 491–519 (2012). https://doi.org/10.1007/s11116-011-9373-6

    Article  Google Scholar 

  • Gim, T.-H.T.: The relationships between land use measures and travel behavior: a meta-analytic approach. Transp. Plan. Technol. 36(5), 413–434 (2013). https://doi.org/10.1080/03081060.2013.818272

    Article  Google Scholar 

  • Gim, T.-H.T.: The relationship between land use and automobile travel utility: a multiple indicators multiple causes approach. Transp. Res. Part d Transp. Environ. 41, 188–204 (2015). https://doi.org/10.1016/j.trd.2015.10.004

    Article  Google Scholar 

  • Gim, T.-H.T.: Testing the reciprocal relationship between attitudes and land use in relation to trip frequencies: a nonrecursive model. Int. Reg. Sci. Rev. 39(2), 203–227 (2016)

    Article  Google Scholar 

  • Gim, T.-H.T.: Full random coefficients multilevel modeling of the relationship between land use and trip time on weekdays and weekends. Sustainability 9(10), 1824 (2017)

    Article  Google Scholar 

  • Gim, T.-H.T.: An analysis of the relationship between land use and weekend travel: focusing on the internal capture of trips. Sustainability 10(2), 425 (2018a)

    Article  Google Scholar 

  • Gim, T.-H.T.: Land use, travel utility, and travel behavior: an analysis from the perspective of the positive utility of travel. Pap. Reg. Sci. 97, S169–S193 (2018b)

    Article  Google Scholar 

  • Gim, T.-H.T.: Examining the effects of residential self-selection on internal and external validity: an interaction moderation analysis using structural equation modeling. Transp. Lett. 11(5), 275–286 (2019)

    Article  Google Scholar 

  • Goodman, A., Sahlqvist, S., Ogilvie, D.: Who uses new walking and cycling infrastructure and how? longitudinal results from the UK iConnect study. Prev. Med. 57(5), 518–524 (2013). https://doi.org/10.1016/j.ypmed.2013.07.007

    Article  Google Scholar 

  • Hägerstrand, T.: What about people in regional science? Pap. Reg. Sci. Assoc. 24(1), 6–21 (1970). https://doi.org/10.1007/BF01936872

    Article  Google Scholar 

  • Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Market. Theory Pract. 19(2), 139–152 (2011). https://doi.org/10.2753/MTP1069-6679190202

    Article  Google Scholar 

  • Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage, Thousand Oaks, CA (2017)

    Google Scholar 

  • Hair, J.F., Risher, J.J., Sarstedt, M., Ringle, C.M.: When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31(1), 2–24 (2019). https://doi.org/10.1108/EBR-11-2018-0203

    Article  Google Scholar 

  • Hall, P.: Sustainable cities or town cramming? planning for a sustainable future. Spon, London, UK (2001)

  • Handy, S., Mokhtarian, P.: Growing cooler: the evidence on urban development and climate change. J. Am. Plann. Assoc. 75(1), 95–96 (2008). https://doi.org/10.1080/01944360802540364

    Article  Google Scholar 

  • Handy, S.L., Boarnet, M.G., Ewing, R., Killingsworth, R.E.: How the built environment affects physical activity: views from urban planning. Am. J. Prev. Med. 23(2 Supplement 1), 64–73 (2002). https://doi.org/10.1016/s0749-3797(02)00475-0

    Article  Google Scholar 

  • Handy, S.L., Cao, X., Mokhtarian, P.L.: Correlation or causality between the built environment and travel behavior? evidence from Northern California. Transp. Res. D 10(6), 427–444 (2005)

    Article  Google Scholar 

  • Handy, S.L.: Does the built environment influence physical activity? Examining the evidence: critical assessment of the literature on the relationships among transportation, land use, and physical activity. In. TRB Special Report 282, (2005)

  • Haybatollahi, M., Czepkiewicz, M., Laatikainen, T., Kyttä, M.: Neighbourhood preferences, active travel behaviour, and built environment: an exploratory study. Transport. Res. f: Traffic Psychol. Behav. 29, 57–69 (2015). https://doi.org/10.1016/j.trf.2015.01.001

    Article  Google Scholar 

  • Hayes, A.F.: Beyond Baron and Kenny: statistical mediation analysis in the new millennium. Commun. Monogr. 76(4), 408–420 (2009)

    Article  Google Scholar 

  • Heinen, E., van Wee, B., Panter, J., Mackett, R., Ogilvie, D.: Residential self-selection in quasi-experimental and natural experimental studies: an extended conceptualization of the relationship between the built environment and travel behavior. J. Transp. Land Use 11(1), 939–959 (2018). https://doi.org/10.5198/jtlu.2018.1165

    Article  Google Scholar 

  • Henseler, J., Dijkstra, T.K., Sarstedt, M., Ringle, C.M., Diamantopoulos, A., Straub, D.W., Ketchen, D.J., Hair, J.F., Hult, G.T.M., Calantone, R.J.: Common beliefs and reality about PLS: comments on Rönkkö and Evermann (2013). Organ. Res. Methods 17(2), 182–209 (2014). https://doi.org/10.1177/1094428114526928

    Article  Google Scholar 

  • Holden, E., Norland, I.T.: Three challenges for the compact city as a sustainable urban form: household consumption of energy and transport in eight residential areas in the Greater Oslo Region. Urban Stud. 42(12), 2145–2166 (2005)

    Article  Google Scholar 

  • Karazsia, B.T., Berlin, K.S.: Can a mediator moderate? considering the role of time and change in the mediator–moderator distinction. Behav. Ther. 49(1), 12–20 (2018). https://doi.org/10.1016/j.beth.2017.10.001

    Article  Google Scholar 

  • Kerr, J., Norman, G.J., Adams, M.A., Ryan, S., Frank, L., Sallis, J.F., Calfas, K.J., Patrick, K.: Do neighborhood environments moderate the effect of physical activity lifestyle interventions in adults? Health Place 16(5), 903–908 (2010). https://doi.org/10.1016/j.healthplace.2010.05.002

    Article  Google Scholar 

  • Khazzoom, D.J.: Economic implications for mandated efficiency in standards for household appliances. Energy J. 1(4), 21–40 (1980)

    Google Scholar 

  • Kim, C., Kim, W.-Y., Park, J.: An analysis of habitual mode use in the years of rising oil prices. J. Adv. Transp. 2019, 9561403 (2019). https://doi.org/10.1155/2019/9561403

    Article  Google Scholar 

  • King, A.C., Toobert, D., Ahn, D., Resnicow, K., Coday, M., Riebe, D., Garber, C.E., Hurtz, S., Morton, J., Sallis, J.F.: Perceived environments as physical activity correlates and moderators of intervention in five studies. Am. J. Health Promot. 21(1), 24–35 (2006). https://doi.org/10.1177/089011710602100106

    Article  Google Scholar 

  • Kitamura, R., Mokhtarian, P.L., Laidet, L.: A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area. Transportation 24(2), 125–158 (1997)

    Article  Google Scholar 

  • Kock, N., Hadaya, P.: Minimum sample size estimation in PLS-SEM: the inverse square root and gamma-exponential methods. Inf. Syst. J. 28(1), 227–261 (2018). https://doi.org/10.1111/isj.12131

    Article  Google Scholar 

  • Krzywinski, M., Altman, N.: Power and sample size. Nat. Methods 10(12), 1139–1140 (2013). https://doi.org/10.1038/nmeth.2738

    Article  Google Scholar 

  • Landau, C., Bock, C.: Value creation through vertical intervention of corporate centres in single business units of unrelated diversified portfolios – the case of private equity firms. Long Range Plan. 46(1), 97–124 (2013). https://doi.org/10.1016/j.lrp.2012.11.002

    Article  Google Scholar 

  • Levinson, D.M., Kumar, A.: Density and the journey to work. Growth Chang. 28(2), 147–172 (1997)

    Article  Google Scholar 

  • Lin, T., Wang, D., Guan, X.: The built environment, travel attitude, and travel behavior: residential self-selection or residential determination? J. Transp. Geogr. 65, 111–122 (2017). https://doi.org/10.1016/j.jtrangeo.2017.10.004

    Article  Google Scholar 

  • Manaugh, K., El-Geneidy, A.: Validating walkability indices: how do different households respond to the walkability of their neighborhood? Transp. Res. Part d Transp. Environ. 16(4), 309–315 (2011). https://doi.org/10.1016/j.trd.2011.01.009

    Article  Google Scholar 

  • McIntosh, C.N., Edwards, J.R., Antonakis, J.: Reflections on partial least squares path modeling. Organ. Res. Methods 17(2), 210–251 (2014). https://doi.org/10.1177/1094428114529165

    Article  Google Scholar 

  • Meurs, H., van Wee, B.: Land use and mobility: a synthesis of findings and policy implications. Eur. J. Transp. Infrastruct. Res. 3(2), 219–233 (2004)

    Google Scholar 

  • Michael, Y.L., Carlson, N.E.: Analysis of individual social-ecological mediators and moderators and their ability to explain effect of a randomized neighborhood walking intervention. Int. J. Behav. Nutr. Phys. Act. 6, 49 (2009). https://doi.org/10.1186/1479-5868-6-49

    Article  Google Scholar 

  • Mokhtarian, P.L., Cao, X.: Examining the impacts of residential self-selection on travel behavior: a focus on methodologies. Transp. Res. B 42(3), 204–228 (2008)

    Article  Google Scholar 

  • Mokhtarian, P.L., van Herick, D.: Quantifying residential self-selection effects: a review of methods and findings from applications of propensity score and sample selection approaches. J. Transp. Land Use 9(1), 7–26 (2016)

    Article  Google Scholar 

  • Moore, J.B., Beets, M.W., Kaczynski, A.T., Besenyi, G.M., Morris, S.F., Kolbe, M.B.: Sex moderates associations between perceptions of the physical and social environments and physical activity in youth. Am. J. Health Promot. 29(2), 132–135 (2014). https://doi.org/10.4278/ajhp.121023-ARB-516

    Article  Google Scholar 

  • Næss, P.: Gender differences in the influences of urban structure on daily-life travel. In: Priya, T., Cresswell, T. (eds.) Gendered Mobilities, pp. 173–192. Ashgate, Aldershot, UK (2008)

    Google Scholar 

  • Næss, P.: Response to Van Wee and Boarnet. J. Transp. Land Use 7(3), 87–92 (2014). https://doi.org/10.5198/jtlu.v7i3.724

    Article  Google Scholar 

  • Nitzl, C., Roldan Jose, L., Cepeda, G.: Mediation analysis in partial least squares path modeling: helping researchers discuss more sophisticated models. Ind. Manag. Data Syst. 116(9), 1849–1864 (2016). https://doi.org/10.1108/IMDS-07-2015-0302

    Article  Google Scholar 

  • Owen, N., Cerin, E., Leslie, E., duToit, L., Coffee, N., Frank, L.D., Bauman, A.E., Hugo, G., Saelens, B.E., Sallis, J.F.: Neighborhood walkability and the walking behavior of Australian adults. Am. J. Prev. Med. 33(5), 387–395 (2007). https://doi.org/10.1016/j.amepre.2007.07.025

    Article  Google Scholar 

  • Panter, J.R., Jones, A.: Attitudes and the environment as determinants of active travel in adults: what do and don’t we know? J. Phys. Act. Health 7(4), 551–561 (2010)

    Article  Google Scholar 

  • Panter, J.R., Jones, A.P., van Sluijs, E.M.F., Griffin, S.J.: Attitudes, social support and environmental perceptions as predictors of active commuting behaviour in school children. J. Epidemiol. Community Health 64(1), 41–48 (2010). https://doi.org/10.1136/jech.2009.086918

    Article  Google Scholar 

  • Preacher, K.J., Hayes, A.F.: SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 36, 717–731 (2004)

    Article  Google Scholar 

  • Rajamani, J., Bhat, C.R., Handy, S.L., Knaap, G.-J., Song, Y.: Assessing impact of urban form measures on nonwork trip mode choice after controlling for demographic and level-of-service effects. Transp. Res. Rec. 1831, 158–165 (2003)

    Article  Google Scholar 

  • Richardson, A.S., Troxel, W.M., Ghosh-Dastidar, M.B., Beckman, R., Hunter, G.P., DeSantis, A.S., Colabianchi, N., Dubowitz, T.: One size doesn’t fit all: cross-sectional associations between neighborhood walkability, crime and physical activity depends on age and sex of residents. BMC Public Health 17(1), 97 (2017). https://doi.org/10.1186/s12889-016-3959-z

    Article  Google Scholar 

  • Sallis, J.F., Owen, N.: Ecological models of health behavior. In: Glanz, K., Rimer, B.K., Viswanath, K. (eds.) Health Behavior: Theory, Research, and Practice, pp. 43–64. Jossey-Bass, San Francisco, CA (2015)

    Google Scholar 

  • Sallis, J.F., Owen, N., Fisher, E.B.: Ecological models of health behavior. In: Glanz, K., Rimer, B.K., Viswanath, K. (eds.) Health Behavior and Health Education: Theory, Research, and Practice, pp. 465–485. Jossey-Bass, San Francisco, CA (2008)

    Google Scholar 

  • Salmon, J., Hesketh, K.D., Arundell, L., Downing, K.L., Biddle, S.J.H.: Changing behavior using ecological models. In: Hagger, M.S., Cameron, L.D., Hamilton, K., Hankonen, N., Lintunen, T. (eds.) The Handbook of Behavior Change, pp. 237–250. Cambridge University Press, Cambridge, UK (2020)

    Chapter  Google Scholar 

  • Saunders, H.: The Khazzoom-Brookes postulate and neoclassical growth. Energy J. 13(4), 131–148 (1992)

    Article  Google Scholar 

  • Schwanen, T., Mokhtarian, P.L.: What affects commute mode choice: neighborhood physical structure or preferences toward neighborhoods? J. Transp. Geogr. 13(1), 83–99 (2005a). https://doi.org/10.1016/j.jtrangeo.2004.11.001

    Article  Google Scholar 

  • Schwanen, T., Mokhtarian, P.L.: What if you live in the wrong neighborhood? the impact of residential neighborhood type dissonance on distance traveled. Transp. Res. Part d Transp. Environ. 10(2), 127–151 (2005b). https://doi.org/10.1016/j.trd.2004.11.002

    Article  Google Scholar 

  • Seoul Research Data Service: Transportation mode share. https://data.si.re.kr/data/%EC%84%9C%EC%9A%B8%EA%B3%BC-%EC%84%B8%EA%B3%84%EB%8C%80%EB%8F%84%EC%8B%9C/51#:~:text=%EA%B7%B8%EB%A6%AC%EA%B3%A0%20%EC%84%9C%EC%9A%B8%EC%9D%80%20%EB%8C%80%EC%A4%91%EA%B5%90%ED%86%B5,%EB%8F%84%EC%8B%9C%EC%9E%84%EC%9D%84%20%EC%95%8C%20%EC%88%98%20%EC%9E%88%EC%97%88%EB%8B%A4. (2021). Accessed December 24, 2021

  • Tenenhaus, M., Pagès, J., Ambroisine, L., Guinot, C.: PLS methodology to study relationships between hedonic judgements and product characteristics. Food Qual. Prefer. 16(4), 315–325 (2005). https://doi.org/10.1016/j.foodqual.2004.05.013

    Article  Google Scholar 

  • Titze, S., Stronegger, W.J., Janschitz, S., Oja, P.: Environmental, social, and personal correlates of cycling for transportation in a student population. J. Phys. Act. Health 4(1), 66–79 (2007). https://doi.org/10.1123/jpah.4.1.6610.1123/jpah.4.1.66

    Article  Google Scholar 

  • Van Acker, V., Witlox, F.: Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. J. Transp. Geogr. 18(1), 65–74 (2010)

    Article  Google Scholar 

  • Van de Coevering, P., Maat, K., van Wee, B.: Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior. Transport. Res. Part A Policy Pract. 118, 466–479 (2018). https://doi.org/10.1016/j.tra.2018.08.035

  • Van Dyck, D., Cerin, E., De Bourdeaudhuij, I., Salvo, D., Christiansen, L.B., Macfarlane, D., Owen, N., Mitas, J., Troelsen, J., Aguinaga-Ontoso, I., Davey, R., Reis, R., Sarmiento, O.L., Schofield, G., Conway, T.L., Sallis, J.F.: Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity: the IPEN adult study. Health Place 36, 65–73 (2015). https://doi.org/10.1016/j.healthplace.2015.09.007

    Article  Google Scholar 

  • Van Wee, B., De Vos, J., Maat, K.: Impacts of the built environment and travel behaviour on attitudes: theories underpinning the reverse causality hypothesis. J. Transp. Geogr. 80, 102540 (2019). https://doi.org/10.1016/j.jtrangeo.2019.102540

    Article  Google Scholar 

  • Van de Coevering, P., Maat, K., van Wee, B.: Causes and effects between attitudes, the built environment and car kilometres: a longitudinal analysis. J. Transp. Geogr. 91, 102982 (2021). https://doi.org/10.1016/j.jtrangeo.2021.102982

    Article  Google Scholar 

  • Wang, D., Lin, T.: Residential self-selection, built environment, and travel behavior in the Chinese context. J. Transport Land Use 7(3), 5–14 (2014)

    Article  Google Scholar 

  • Warner, R.M.: Applied Statistics: From Bivariate Through Multivariate Techniques. Sage, Thousand Oaks, CA (2013)

    Google Scholar 

  • Zang, P., Lu, Y., Ma, J., Xie, B., Wang, R., Liu, Y.: Disentangling residential self-selection from impacts of built environment characteristics on travel behaviors for older adults. Soc. Sci. Med. 238, 112515 (2019). https://doi.org/10.1016/j.socscimed.2019.112515

    Article  Google Scholar 

  • Zegras, P.C.: Influence of land use on travel behavior in Santiago, Chile. Transport. Res. Record 1898, 175–182 (2004)

    Article  Google Scholar 

  • Zhang, M.: The role of land use in travel mode choice: evidence from Boston and Hong Kong. J. Am. Plann. Assoc. 70(3), 344–360 (2004)

    Article  Google Scholar 

  • Zhao, X., Lynch, J.G., Chen, Q.: Reconsidering Baron and Kenny: myths and truths about mediation analysis. J. Consumer Res. 37(2), 197–206 (2010)

    Article  Google Scholar 

  • Zhou, B., Kockelman, K.: Self-selection in home choice: Use of treatment effects in evaluating relationship between built environment and travel behavior. Transp. Res. Rec. 2077, 54–61 (2008)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021S1A3A2A01087370).

Author information

Authors and Affiliations

Authors

Contributions

T.H.T.G. conceived the study, performed the analysis, and wrote the manuscript.

Corresponding author

Correspondence to Tae-Hyoung Tommy Gim.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Moderation models (extended version)

Appendix: Moderation models (extended version)

  

Automobile travel

Nonmotorized travel

  

Standardized coef

 

S.D

t

Standardized coef

 

S.D

t

 

T_Nn ← TB

1

   

1

   

Path coefficients

AT → TB

0.382

 

0.399

0.959

 − 0.088

 

0.075

1.179

 

BE → TB

 − 1.474

 

0.990

1.489

 − 0.005

 

0.140

0.034

 

BE*AT → TB

 − 0.319

 

0.639

0.499

 − 0.266

 

0.286

0.930

 

BE*SD → TB

 − 1.248

*

0.747

1.671

0.029

 

0.166

0.173

 

SD → TB

0.159

 

0.181

0.877

0.082

 

0.118

0.694

Outer weights

H_Ad → SD

0.479

 

0.457

1.050

0.146

 

0.211

0.691

 

H_Ch05 → SD

 − 0.896

 

0.710

1.262

0.147

 

0.200

0.735

 

H_Ch19 → SD

0.203

 

0.256

0.791

0.147

 

0.194

0.758

 

H_In → SD

0.080

 

0.229

0.351

0.330

 

0.287

1.151

 

H_Sz → SD

0.162

 

0.277

0.585

 − 0.464

 

0.428

1.085

 

I_Ag → SD

0.373

 

0.332

1.126

0.352

 

0.320

1.101

 

I_Gn → SD

0.035

 

0.255

0.136

 − 0.232

 

0.339

0.683

 

I_Mr → SD

 − 0.300

 

0.313

0.958

0.341

 

0.310

1.100

Outer loadings

At_E_At ← AT

0.364

 

0.347

1.049

0.154

 

0.125

1.231

 

At_E_Bk ← AT

0.089

 

0.248

0.360

0.182

 

0.188

0.967

 

At_E_Bs ← AT

0.176

 

0.254

0.692

0.557

***

0.191

2.909

 

At_E_Cl ← AT

0.241

 

0.286

0.843

0.532

***

0.165

3.229

 

At_E_Jb ← AT

0.256

 

0.341

0.751

0.594

***

0.196

3.032

 

At_E_Mt ← AT

0.299

 

0.343

0.872

0.544

***

0.178

3.048

 

At_E_Rs ← AT

0.434

 

0.364

1.191

0.799

***

0.230

3.478

 

At_E_Sc ← AT

0.489

 

0.431

1.136

0.399

**

0.186

2.145

 

At_E_Sp ← AT

 − 0.146

 

0.257

0.567

 − 0.121

 

0.142

0.853

 

At_E_St ← AT

0.436

 

0.335

1.302

0.646

***

0.222

2.912

 

At_E_Wl ← AT

0.211

 

0.270

0.780

0.015

 

0.201

0.073

 

At_M_At ← AT

 − 0.332

 

0.339

0.978

0.262

 

0.210

1.245

 

At_M_Bk ← AT

0.454

 

0.374

1.214

 − 0.122

 

0.222

0.549

 

At_M_Bs ← AT

 − 0.185

 

0.288

0.644

0.041

 

0.197

0.206

 

At_M_Mt ← AT

 − 0.357

 

0.376

0.950

0.253

 

0.166

1.520

 

At_M_Wl ← AT

 − 0.084

 

0.187

0.450

 − 0.070

 

0.184

0.382

 

D_Bsn ← BE†

0.992

***

0.054

18.431

0.686

***

0.113

6.064

 

D_Bus02 ← BE†

0.993

***

0.062

15.942

0.693

***

0.191

3.623

 

D_Bus05 ← BE†

0.992

***

0.059

16.702

0.714

***

0.195

3.667

 

D_Emp ← BE†

0.993

***

0.086

11.514

0.595

***

0.138

4.319

 

Ent ← BE

 − 0.016

 

0.163

0.100

 − 0.156

 

0.177

0.885

 

D_Int02 ← BE†

0.993

***

0.046

21.755

0.841

***

0.135

6.239

 

D_Int05 ← BE†

0.993

***

0.060

16.657

0.836

***

0.143

5.865

 

D_Mtr02 ← BE†

0.993

***

0.057

17.404

0.780

***

0.101

7.728

 

D_Mtr05 ← BE†

0.992

***

0.046

21.790

0.809

***

0.089

9.136

 

D_Ppl ← BE†

0.993

***

0.034

29.173

0.546

***

0.211

2.588

 

D_Bsn*At_E_At ← BE*AT

0.893

***

0.188

4.759

0.038

 

0.167

0.224

 

D_Bsn*At_E_Bk ← BE*AT

0.913

***

0.189

4.823

0.037

 

0.275

0.136

 

D_Bsn*At_E_Bs ← BE*AT

0.967

***

0.193

5.014

0.275

 

0.268

1.026

 

D_Bsn*At_E_Cl ← BE*AT

0.967

***

0.205

4.724

 − 0.054

 

0.215

0.249

 

D_Bsn*At_E_Jb ← BE*AT

0.963

***

0.210

4.589

0.172

 

0.186

0.927

 

D_Bsn*At_E_Mt ← BE*AT

 − 0.948

***

0.222

4.266

0.191

 

0.258

0.743

 

D_Bsn*At_E_Rs ← BE*AT

0.982

***

0.196

4.999

 − 0.237

 

0.294

0.806

 

D_Bsn*At_E_Sc ← BE*AT

0.939

***

0.200

4.688

0.022

 

0.247

0.087

 

D_Bsn*At_E_Sp ← BE*AT

 − 0.834

***

0.232

3.603

0.319

 

0.311

1.026

 

D_Bsn*At_E_St ← BE*AT

0.972

***

0.192

5.053

 − 0.255

 

0.308

0.828

 

D_Bsn*At_E_Wl ← BE*AT

 − 0.301

**

0.139

2.169

0.079

 

0.262

0.303

 

D_Bsn*At_M_At ← BE*AT

0.757

***

0.173

4.383

0.288

 

0.285

1.009

 

D_Bsn*At_M_Bk ← BE*AT

0.967

***

0.203

4.771

 − 0.154

 

0.267

0.576

 

D_Bsn*At_M_Bs ← BE*AT

 − 0.978

***

0.207

4.735

0.170

 

0.238

0.717

 

D_Bsn*At_M_Mt ← BE*AT

 − 0.974

***

0.211

4.614

0.141

 

0.245

0.576

 

D_Bsn*At_M_Wl ← BE*AT

 − 0.885

***

0.211

4.193

0.052

 

0.242

0.213

 

D_Bsn*H_Ad ← BE*SD

 − 0.957

 

0.666

1.437

0.341

 

0.420

0.813

 

D_Bsn*H_Ch05 ← BE*SD

0.966

 

0.659

1.467

0.341

 

0.420

0.812

 

D_Bsn*H_Ch19 ← BE*SD

0.951

 

0.615

1.547

0.342

 

0.420

0.812

 

D_Bsn*H_In ← BE*SD

 − 0.777

 

0.552

1.409

0.096

 

0.184

0.519

 

D_Bsn*H_Sz ← BE*SD

0.632

*

0.370

1.709

0.061

 

0.210

0.291

 

D_Bsn*I_Ag ← BE*SD

0.784

*

0.474

1.655

 − 0.173

 

0.248

0.697

 

D_Bsn*I_Gn ← BE*SD

 − 0.975

 

0.651

1.498

 − 0.018

 

0.209

0.084

 

D_Bsn*I_Mr ← BE*SD

0.982

 

0.647

1.518

 − 0.003

 

0.215

0.014

 

D_Bus02*At_E_At ← BE*AT

0.895

***

0.189

4.741

0.073

 

0.159

0.460

 

D_Bus02*At_E_Bk ← BE*AT

0.916

***

0.190

4.827

0.505

 

0.334

1.515

 

D_Bus02*At_E_Bs ← BE*AT

0.965

***

0.193

5.009

0.117

 

0.150

0.782

 

D_Bus02*At_E_Cl ← BE*AT

0.964

***

0.205

4.708

 − 0.434

 

0.326

1.330

 

D_Bus02*At_E_Jb ← BE*AT

0.963

***

0.211

4.560

 − 0.008

 

0.184

0.041

 

D_Bus02*At_E_Mt ← BE*AT

 − 0.948

***

0.223

4.246

0.097

 

0.177

0.548

 

D_Bus02*At_E_Rs ← BE*AT

0.981

***

0.196

5.004

 − 0.435

 

0.364

1.195

 

D_Bus02*At_E_Sc ← BE*AT

0.937

***

0.201

4.661

0.198

 

0.193

1.025

 

D_Bus02*At_E_Sp ← BE*AT

 − 0.832

***

0.232

3.588

 − 0.186

 

0.197

0.940

 

D_Bus02*At_E_St ← BE*AT

0.970

***

0.192

5.045

 − 0.390

 

0.315

1.240

 

D_Bus02*At_E_Wl ← BE*AT

 − 0.309

**

0.142

2.170

0.352

 

0.247

1.423

 

D_Bus02*At_M_At ← BE*AT

0.754

***

0.174

4.336

0.252

 

0.246

1.026

 

D_Bus02*At_M_Bk ← BE*AT

0.967

***

0.202

4.779

 − 0.058

 

0.153

0.378

 

D_Bus02*At_M_Bs ← BE*AT

 − 0.979

***

0.206

4.748

 − 0.009

 

0.137

0.068

 

D_Bus02*At_M_Mt ← BE*AT

 − 0.973

***

0.211

4.618

0.003

 

0.147

0.017

 

D_Bus02*At_M_Wl ← BE*AT

 − 0.882

***

0.211

4.182

 − 0.094

 

0.168

0.557

 

D_Bus02*H_Ad ← BE*SD

 − 0.961

 

0.667

1.441

0.619

 

0.473

1.307

 

D_Bus02*H_Ch05 ← BE*SD

0.964

 

0.658

1.466

0.618

 

0.473

1.307

 

D_Bus02*H_Ch19 ← BE*SD

0.945

 

0.609

1.553

0.618

 

0.473

1.307

 

D_Bus02*H_In ← BE*SD

 − 0.800

 

0.563

1.420

0.440

 

0.327

1.346

 

D_Bus02*H_Sz ← BE*SD

0.649

*

0.380

1.708

0.306

 

0.269

1.137

 

D_Bus02*I_Ag ← BE*SD

0.795

*

0.482

1.649

 − 0.157

 

0.286

0.550

 

D_Bus02*I_Gn ← BE*SD

 − 0.974

 

0.650

1.498

0.139

 

0.201

0.694

 

D_Bus02*I_Mr ← BE*SD

0.983

 

0.649

1.515

0.008

 

0.245

0.031

 

D_Bus05*At_E_At ← BE*AT

0.896

***

0.190

4.712

0.159

 

0.185

0.859

 

D_Bus05*At_E_Bk ← BE*AT

0.918

***

0.191

4.813

0.507

 

0.340

1.490

 

D_Bus05*At_E_Bs ← BE*AT

0.964

***

0.193

5.005

0.122

 

0.154

0.788

 

D_Bus05*At_E_Cl ← BE*AT

0.961

***

0.205

4.676

 − 0.456

 

0.337

1.351

 

D_Bus05*At_E_Jb ← BE*AT

0.958

***

0.213

4.509

 − 0.014

 

0.194

0.071

 

D_Bus05*At_E_Mt ← BE*AT

 − 0.949

***

0.224

4.241

0.096

 

0.178

0.537

 

D_Bus05*At_E_Rs ← BE*AT

0.980

***

0.196

5.013

 − 0.444

 

0.370

1.200

 

D_Bus05*At_E_Sc ← BE*AT

0.935

***

0.202

4.639

0.204

 

0.202

1.012

 

D_Bus05*At_E_Sp ← BE*AT

 − 0.830

***

0.232

3.580

 − 0.190

 

0.200

0.951

 

D_Bus05*At_E_St ← BE*AT

0.968

***

0.192

5.036

 − 0.429

 

0.339

1.265

 

D_Bus05*At_E_Wl ← BE*AT

 − 0.312

**

0.143

2.174

0.364

 

0.254

1.435

 

D_Bus05*At_M_At ← BE*AT

0.751

***

0.174

4.308

0.251

 

0.249

1.006

 

D_Bus05*At_M_Bk ← BE*AT

0.966

***

0.201

4.804

 − 0.062

 

0.157

0.394

 

D_Bus05*At_M_Bs ← BE*AT

 − 0.979

***

0.206

4.760

0.008

 

0.139

0.060

 

D_Bus05*At_M_Mt ← BE*AT

 − 0.971

***

0.210

4.619

0.013

 

0.151

0.087

 

D_Bus05*At_M_Wl ← BE*AT

 − 0.871

***

0.210

4.141

 − 0.075

 

0.165

0.456

 

D_Bus05*H_Ad ← BE*SD

 − 0.963

 

0.666

1.446

0.633

 

0.479

1.322

 

D_Bus05*H_Ch05 ← BE*SD

0.962

 

0.656

1.467

0.633

 

0.479

1.321

 

D_Bus05*H_Ch19 ← BE*SD

0.940

 

0.604

1.556

0.633

 

0.479

1.321

 

D_Bus05*H_In ← BE*SD

 − 0.808

 

0.568

1.424

0.499

 

0.358

1.392

 

D_Bus05*H_Sz ← BE*SD

0.660

*

0.387

1.706

0.308

 

0.269

1.147

 

D_Bus05*I_Ag ← BE*SD

0.787

*

0.478

1.646

 − 0.138

 

0.279

0.494

 

D_Bus05*I_Gn ← BE*SD

 − 0.974

 

0.650

1.498

0.137

 

0.209

0.653

 

D_Bus05*I_Mr ← BE*SD

0.983

 

0.649

1.514

0.026

 

0.246

0.107

 

D_Emp*At_E_At ← BE*AT

0.892

***

0.187

4.763

0.052

 

0.141

0.371

 

D_Emp*At_E_Bk ← BE*AT

0.913

***

0.190

4.819

0.099

 

0.208

0.479

 

D_Emp*At_E_Bs ← BE*AT

0.967

***

0.193

5.010

0.244

 

0.222

1.097

 

D_Emp*At_E_Cl ← BE*AT

0.966

***

0.204

4.727

 − 0.031

 

0.171

0.183

 

D_Emp*At_E_Jb ← BE*AT

0.963

***

0.209

4.597

0.133

 

0.137

0.976

 

D_Emp*At_E_Mt ← BE*AT

 − 0.948

***

0.222

4.261

0.153

 

0.216

0.705

 

D_Emp*At_E_Rs ← BE*AT

0.982

***

0.196

4.996

 − 0.199

 

0.231

0.862

 

D_Emp*At_E_Sc ← BE*AT

0.938

***

0.200

4.684

0.073

 

0.173

0.424

 

D_Emp*At_E_Sp ← BE*AT

 − 0.834

***

0.232

3.599

0.312

 

0.268

1.165

 

D_Emp*At_E_St ← BE*AT

0.972

***

0.192

5.054

 − 0.274

 

0.263

1.041

 

D_Emp*At_E_Wl ← BE*AT

 − 0.301

**

0.139

2.167

0.160

 

0.228

0.702

 

D_Emp*At_M_At ← BE*AT

0.758

***

0.173

4.383

0.174

 

0.181

0.964

 

D_Emp*At_M_Bk ← BE*AT

0.967

***

0.203

4.765

 − 0.179

 

0.243

0.736

 

D_Emp*At_M_Bs ← BE*AT

 − 0.978

***

0.206

4.739

0.075

 

0.150

0.502

 

D_Emp*At_M_Mt ← BE*AT

 − 0.973

***

0.211

4.609

0.079

 

0.184

0.429

 

D_Emp*At_M_Wl ← BE*AT

 − 0.885

***

0.211

4.195

 − 0.038

 

0.181

0.210

 

D_Emp*H_Ad ← BE*SD

 − 0.957

 

0.665

1.438

0.618

 

0.518

1.192

 

D_Emp*H_Ch05 ← BE*SD

0.967

 

0.659

1.466

0.618

 

0.518

1.192

 

D_Emp*H_Ch19 ← BE*SD

0.952

 

0.616

1.546

0.618

 

0.518

1.192

 

D_Emp*H_In ← BE*SD

 − 0.777

 

0.552

1.408

0.128

 

0.210

0.608

 

D_Emp*H_Sz ← BE*SD

0.632

*

0.370

1.709

 − 0.083

 

0.168

0.496

 

D_Emp*I_Ag ← BE*SD

0.785

*

0.474

1.655

 − 0.133

 

0.188

0.709

 

D_Emp*I_Gn ← BE*SD

 − 0.975

 

0.651

1.498

 − 0.062

 

0.168

0.368

 

D_Emp*I_Mr ← BE*SD

0.982

 

0.647

1.518

 − 0.058

 

0.179

0.324

 

D_Int02*At_E_At ← BE*AT

0.897

***

0.187

4.786

0.039

 

0.175

0.225

 

D_Int02*At_E_Bk ← BE*AT

0.914

***

0.190

4.819

0.404

 

0.324

1.246

 

D_Int02*At_E_Bs ← BE*AT

0.967

***

0.193

5.011

0.286

 

0.237

1.207

 

D_Int02*At_E_Cl ← BE*AT

0.966

***

0.205

4.723

 − 0.338

 

0.297

1.141

 

D_Int02*At_E_Jb ← BE*AT

0.963

***

0.210

4.581

0.040

 

0.206

0.193

 

D_Int02*At_E_Mt ← BE*AT

 − 0.948

***

0.222

4.268

0.239

 

0.245

0.975

 

D_Int02*At_E_Rs ← BE*AT

0.982

***

0.196

5.004

 − 0.380

 

0.350

1.087

 

D_Int02*At_E_Sc ← BE*AT

0.939

***

0.200

4.686

0.212

 

0.229

0.922

 

D_Int02*At_E_Sp ← BE*AT

 − 0.832

***

0.232

3.586

0.290

 

0.252

1.151

 

D_Int02*At_E_St ← BE*AT

0.972

***

0.192

5.056

 − 0.413

 

0.350

1.181

 

D_Int02*At_E_Wl ← BE*AT

 − 0.307

**

0.141

2.187

0.508

 

0.341

1.488

 

D_Int02*At_M_At ← BE*AT

0.757

***

0.174

4.363

0.100

 

0.157

0.638

 

D_Int02*At_M_Bk ← BE*AT

0.966

***

0.203

4.758

0.001

 

0.189

0.005

 

D_Int02*At_M_Bs ← BE*AT

 − 0.979

***

0.207

4.736

0.089

 

0.169

0.526

 

D_Int02*At_M_Mt ← BE*AT

 − 0.974

***

0.211

4.609

0.100

 

0.189

0.530

 

D_Int02*At_M_Wl ← BE*AT

 − 0.885

***

0.211

4.206

 − 0.010

 

0.187

0.056

 

D_Int02*H_Ad ← BE*SD

 − 0.959

 

0.667

1.438

0.844

 

0.600

1.405

 

D_Int02*H_Ch05 ← BE*SD

0.968

 

0.661

1.465

0.843

 

0.600

1.405

 

D_Int02*H_Ch19 ← BE*SD

0.950

 

0.614

1.547

0.844

 

0.600

1.405

 

D_Int02*H_In ← BE*SD

 − 0.774

 

0.549

1.409

0.726

 

0.465

1.562

 

D_Int02*H_Sz ← BE*SD

0.638

*

0.374

1.706

0.271

 

0.266

1.019

 

D_Int02*I_Ag ← BE*SD

0.781

*

0.472

1.654

 − 0.157

 

0.256

0.614

 

D_Int02*I_Gn ← BE*SD

 − 0.974

 

0.650

1.498

0.015

 

0.226

0.066

 

D_Int02*I_Mr ← BE*SD

0.982

 

0.647

1.518

0.017

 

0.220

0.077

 

D_Int05*At_E_At ← BE*AT

0.900

***

0.188

4.796

0.060

 

0.175

0.341

 

D_Int05*At_E_Bk ← BE*AT

0.916

***

0.190

4.819

0.402

 

0.312

1.288

 

D_Int05*At_E_Bs ← BE*AT

0.967

***

0.193

5.011

0.291

 

0.235

1.236

 

D_Int05*At_E_Cl ← BE*AT

0.965

***

0.205

4.719

 − 0.347

 

0.302

1.151

 

D_Int05*At_E_Jb ← BE*AT

0.962

***

0.211

4.568

0.007

 

0.208

0.036

 

D_Int05*At_E_Mt ← BE*AT

 − 0.949

***

0.222

4.267

0.231

 

0.238

0.970

 

D_Int05*At_E_Rs ← BE*AT

0.982

***

0.196

5.011

 − 0.354

 

0.341

1.039

 

D_Int05*At_E_Sc ← BE*AT

0.939

***

0.200

4.694

0.204

 

0.224

0.910

 

D_Int05*At_E_Sp ← BE*AT

 − 0.831

***

0.232

3.584

0.273

 

0.243

1.127

 

D_Int05*At_E_St ← BE*AT

0.972

***

0.192

5.057

 − 0.372

 

0.322

1.155

 

D_Int05*At_E_Wl ← BE*AT

 − 0.310

**

0.141

2.198

0.498

 

0.333

1.493

 

D_Int05*At_M_At ← BE*AT

0.756

***

0.174

4.343

0.250

 

0.254

0.987

 

D_Int05*At_M_Bk ← BE*AT

0.965

***

0.203

4.758

 − 0.006

 

0.185

0.031

 

D_Int05*At_M_Bs ← BE*AT

 − 0.980

***

0.207

4.736

0.129

 

0.172

0.750

 

D_Int05*At_M_Mt ← BE*AT

 − 0.973

***

0.211

4.607

0.100

 

0.187

0.535

 

D_Int05*At_M_Wl ← BE*AT

 − 0.883

***

0.210

4.204

 − 0.003

 

0.183

0.016

 

D_Int05*H_Ad ← BE*SD

 − 0.960

 

0.667

1.440

0.851

 

0.574

1.484

 

D_Int05*H_Ch05 ← BE*SD

0.969

 

0.661

1.465

0.851

 

0.574

1.483

 

D_Int05*H_Ch19 ← BE*SD

0.949

 

0.613

1.549

0.851

 

0.574

1.483

 

D_Int05*H_In ← BE*SD

 − 0.775

 

0.550

1.408

0.659

 

0.431

1.529

 

D_Int05*H_Sz ← BE*SD

0.644

*

0.378

1.705

0.303

 

0.278

1.091

 

D_Int05*I_Ag ← BE*SD

0.775

*

0.469

1.654

 − 0.182

 

0.266

0.685

 

D_Int05*I_Gn ← BE*SD

 − 0.974

 

0.650

1.499

0.065

 

0.214

0.304

 

D_Int05*I_Mr ← BE*SD

0.982

 

0.647

1.518

 − 0.011

 

0.221

0.050

 

D_Mtr02*At_E_At ← BE*AT

0.892

***

0.188

4.753

0.071

 

0.173

0.408

 

D_Mtr02*At_E_Bk ← BE*AT

0.913

***

0.189

4.822

0.168

 

0.241

0.697

 

D_Mtr02*At_E_Bs ← BE*AT

0.966

***

0.193

5.014

0.139

 

0.203

0.686

 

D_Mtr02*At_E_Cl ← BE*AT

0.966

***

0.205

4.723

 − 0.116

 

0.202

0.573

 

D_Mtr02*At_E_Jb ← BE*AT

0.963

***

0.210

4.590

0.046

 

0.196

0.236

 

D_Mtr02*At_E_Mt ← BE*AT

 − 0.948

***

0.222

4.264

0.173

 

0.231

0.747

 

D_Mtr02*At_E_Rs ← BE*AT

0.982

***

0.196

4.999

 − 0.348

 

0.322

1.079

 

D_Mtr02*At_E_Sc ← BE*AT

0.938

***

0.200

4.685

 − 0.061

 

0.192

0.316

 

D_Mtr02*At_E_Sp ← BE*AT

 − 0.834

***

0.232

3.603

0.238

 

0.222

1.075

 

D_Mtr02*At_E_St ← BE*AT

0.972

***

0.192

5.052

 − 0.343

 

0.302

1.137

 

D_Mtr02*At_E_Wl ← BE*AT

 − 0.300

**

0.139

2.167

0.206

 

0.242

0.851

 

D_Mtr02*At_M_At ← BE*AT

0.757

***

0.173

4.382

0.213

 

0.225

0.948

 

D_Mtr02*At_M_Bk ← BE*AT

0.967

***

0.203

4.771

 − 0.189

 

0.262

0.721

 

D_Mtr02*At_M_Bs ← BE*AT

 − 0.978

***

0.207

4.736

0.141

 

0.198

0.712

 

D_Mtr02*At_M_Mt ← BE*AT

 − 0.974

***

0.211

4.614

0.078

 

0.218

0.358

 

D_Mtr02*At_M_Wl ← BE*AT

 − 0.885

***

0.211

4.191

 − 0.112

 

0.216

0.520

 

D_Mtr02*H_Ad ← BE*SD

 − 0.957

 

0.666

1.437

0.837

 

0.595

1.406

 

D_Mtr02*H_Ch05 ← BE*SD

0.966

 

0.659

1.467

0.837

 

0.596

1.406

 

D_Mtr02*H_Ch19 ← BE*SD

0.952

 

0.615

1.547

0.837

 

0.595

1.406

 

D_Mtr02*H_In ← BE*SD

 − 0.778

 

0.552

1.410

0.658

 

0.410

1.605

 

D_Mtr02*H_Sz ← BE*SD

0.633

*

0.370

1.709

0.117

 

0.178

0.655

 

D_Mtr02*I_Ag ← BE*SD

0.784

*

0.474

1.655

 − 0.076

 

0.217

0.350

 

D_Mtr02*I_Gn ← BE*SD

 − 0.975

 

0.651

1.498

 − 0.062

 

0.206

0.302

 

D_Mtr02*I_Mr ← BE*SD

0.982

 

0.647

1.518

0.040

 

0.206

0.192

 

D_Mtr05*At_E_At ← BE*AT

0.893

***

0.188

4.755

0.032

 

0.178

0.182

 

D_Mtr05*At_E_Bk ← BE*AT

0.913

***

0.189

4.823

0.253

 

0.255

0.989

 

D_Mtr05*At_E_Bs ← BE*AT

0.966

***

0.193

5.013

0.184

 

0.196

0.935

 

D_Mtr05*At_E_Cl ← BE*AT

0.966

***

0.205

4.723

 − 0.213

 

0.229

0.928

 

D_Mtr05*At_E_Jb ← BE*AT

0.963

***

0.210

4.590

0.083

 

0.194

0.428

 

D_Mtr05*At_E_Mt ← BE*AT

 − 0.948

***

0.222

4.263

0.215

 

0.231

0.932

 

D_Mtr05*At_E_Rs ← BE*AT

0.982

***

0.196

4.999

 − 0.283

 

0.295

0.961

 

D_Mtr05*At_E_Sc ← BE*AT

0.938

***

0.200

4.686

0.011

 

0.193

0.055

 

D_Mtr05*At_E_Sp ← BE*AT

 − 0.834

***

0.232

3.602

0.301

 

0.262

1.150

 

D_Mtr05*At_E_St ← BE*AT

0.972

***

0.192

5.053

 − 0.320

 

0.283

1.130

 

D_Mtr05*At_E_Wl ← BE*AT

 − 0.301

**

0.139

2.168

0.288

 

0.256

1.125

 

D_Mtr05*At_M_At ← BE*AT

0.757

***

0.173

4.381

0.246

 

0.250

0.982

 

D_Mtr05*At_M_Bk ← BE*AT

0.967

***

0.203

4.770

 − 0.142

 

0.236

0.600

 

D_Mtr05*At_M_Bs ← BE*AT

 − 0.978

***

0.207

4.736

0.203

 

0.221

0.917

 

D_Mtr05*At_M_Mt ← BE*AT

 − 0.974

***

0.211

4.613

0.120

 

0.212

0.564

 

D_Mtr05*At_M_Wl ← BE*AT

 − 0.884

***

0.211

4.191

 − 0.108

 

0.205

0.526

 

D_Mtr05*H_Ad ← BE*SD

 − 0.957

 

0.666

1.438

0.838

 

0.548

1.527

 

D_Mtr05*H_Ch05 ← BE*SD

0.966

 

0.659

1.467

0.838

 

0.549

1.527

 

D_Mtr05*H_Ch19 ← BE*SD

0.952

 

0.615

1.547

0.838

 

0.549

1.527

 

D_Mtr05*H_In ← BE*SD

 − 0.779

 

0.552

1.411

0.637

 

0.401

1.587

 

D_Mtr05*H_Sz ← BE*SD

0.634

*

0.371

1.709

0.193

 

0.204

0.945

 

D_Mtr05*I_Ag ← BE*SD

0.784

*

0.474

1.655

 − 0.100

 

0.226

0.443

 

D_Mtr05*I_Gn ← BE*SD

 − 0.975

 

0.651

1.498

 − 0.006

 

0.198

0.030

 

D_Mtr05*I_Mr ← BE*SD

0.982

 

0.647

1.518

0.050

 

0.224

0.224

 

D_Ppl*At_E_At ← BE*AT

0.893

***

0.188

4.755

0.021

 

0.119

0.175

 

D_Ppl*At_E_Bk ← BE*AT

0.914

***

0.190

4.812

0.437

 

0.304

1.437

 

D_Ppl*At_E_Bs ← BE*AT

0.967

***

0.193

5.009

0.113

 

0.154

0.733

 

D_Ppl*At_E_Cl ← BE*AT

0.966

***

0.205

4.720

 − 0.310

 

0.259

1.195

 

D_Ppl*At_E_Jb ← BE*AT

0.963

***

0.210

4.585

 − 0.044

 

0.174

0.253

 

D_Ppl*At_E_Mt ← BE*AT

 − 0.947

***

0.222

4.270

0.037

 

0.165

0.221

 

D_Ppl*At_E_Rs ← BE*AT

0.982

***

0.197

4.997

 − 0.323

 

0.301

1.073

 

D_Ppl*At_E_Sc ← BE*AT

0.939

***

0.201

4.680

0.291

 

0.226

1.289

 

D_Ppl*At_E_Sp ← BE*AT

 − 0.833

***

0.232

3.590

 − 0.169

 

0.187

0.906

 

D_Ppl*At_E_St ← BE*AT

0.972

***

0.193

5.050

 − 0.294

 

0.268

1.095

 

D_Ppl*At_E_Wl ← BE*AT

 − 0.303

**

0.139

2.173

0.295

 

0.215

1.376

 

D_Ppl*At_M_At ← BE*AT

0.758

***

0.173

4.368

0.221

 

0.224

0.983

 

D_Ppl*At_M_Bk ← BE*AT

0.967

***

0.203

4.766

 − 0.092

 

0.169

0.542

 

D_Ppl*At_M_Bs ← BE*AT

 − 0.979

***

0.206

4.742

0.075

 

0.152

0.492

 

D_Ppl*At_M_Mt ← BE*AT

 − 0.974

***

0.211

4.610

 − 0.010

 

0.133

0.079

 

D_Ppl*At_M_Wl ← BE*AT

 − 0.885

***

0.211

4.201

 − 0.093

 

0.166

0.560

 

D_Ppl*H_Ad ← BE*SD

 − 0.958

 

0.667

1.437

0.688

 

0.481

1.431

 

D_Ppl*H_Ch05 ← BE*SD

0.968

 

0.660

1.466

0.687

 

0.481

1.430

 

D_Ppl*H_Ch19 ← BE*SD

0.952

 

0.615

1.547

0.688

 

0.481

1.430

 

D_Ppl*H_In ← BE*SD

 − 0.780

 

0.553

1.411

0.338

 

0.272

1.240

 

D_Ppl*H_Sz ← BE*SD

0.630

*

0.369

1.708

0.224

 

0.211

1.060

 

D_Ppl*I_Ag ← BE*SD

0.782

*

0.473

1.654

 − 0.103

 

0.262

0.393

 

D_Ppl*I_Gn ← BE*SD

 − 0.974

 

0.650

1.498

0.068

 

0.167

0.408

 

D_Ppl*I_Mr ← BE*SD

0.982

 

0.647

1.518

 − 0.023

 

0.234

0.099

 

Ent*At_E_At ← BE*AT

0.117

**

0.056

2.098

 − 0.004

 

0.070

0.054

 

Ent*At_E_Bk ← BE*AT

0.064

 

0.063

1.010

 − 0.034

 

0.105

0.328

 

Ent*At_E_Bs ← BE*AT

0.025

 

0.060

0.412

 − 0.022

 

0.112

0.193

 

Ent*At_E_Cl ← BE*AT

0.031

 

0.064

0.488

0.128

 

0.133

0.962

 

Ent*At_E_Jb ← BE*AT

0.059

 

0.090

0.656

0.125

 

0.132

0.946

 

Ent*At_E_Mt ← BE*AT

 − 0.053

 

0.088

0.609

 − 0.036

 

0.102

0.356

 

Ent*At_E_Rs ← BE*AT

0.067

 

0.070

0.950

0.077

 

0.114

0.680

 

Ent*At_E_Sc ← BE*AT

0.086

 

0.076

1.123

 − 0.042

 

0.109

0.387

 

Ent*At_E_Sp ← BE*AT

 − 0.095

 

0.071

1.326

 − 0.199

 

0.190

1.049

 

Ent*At_E_St ← BE*AT

0.053

 

0.071

0.744

0.013

 

0.104

0.125

 

Ent*At_E_Wl ← BE*AT

0.052

 

0.050

1.042

 − 0.130

 

0.122

1.065

 

Ent*At_M_At ← BE*AT

 − 0.012

 

0.056

0.220

 − 0.170

 

0.213

0.800

 

Ent*At_M_Bk ← BE*AT

0.080

 

0.073

1.086

 − 0.052

 

0.095

0.550

 

Ent*At_M_Bs ← BE*AT

 − 0.132

 

0.117

1.133

 − 0.046

 

0.096

0.476

 

Ent*At_M_Mt ← BE*AT

 − 0.057

 

0.065

0.866

0.069

 

0.112

0.618

 

Ent*At_M_Wl ← BE*AT

0.049

 

0.087

0.557

 − 0.032

 

0.097

0.334

 

Ent*H_Ad ← BE*SD

0.126

 

0.135

0.929

 − 0.778

 

0.521

1.494

 

Ent*H_Ch05 ← BE*SD

0.056

 

0.071

0.781

 − 0.776

 

0.520

1.493

 

Ent*H_Ch19 ← BE*SD

0.021

 

0.090

0.239

 − 0.777

 

0.520

1.493

 

Ent*H_In ← BE*SD

0.026

 

0.067

0.385

 − 0.214

 

0.203

1.058

 

Ent*H_Sz ← BE*SD

0.167

 

0.147

1.141

 − 0.157

 

0.150

1.043

 

Ent*I_Ag ← BE*SD

0.187

 

0.156

1.196

 − 0.031

 

0.170

0.185

 

Ent*I_Gn ← BE*SD

 − 0.253

 

0.194

1.307

 − 0.071

 

0.126

0.563

 

Ent*I_Mr ← BE*SD

0.258

 

0.187

1.376

 − 0.058

 

0.160

0.363

  

Cronbach α: 0.586 (AT), 0.979 (BE), 0.928 (BE*AT), and 0.864 (BE*SD) Mean R2: 0.295

Cronbach α: 0.615 (AT), 0.840 (BE), 0.901 (BE*AT), and 0.918 (BE*SD) Mean R2: 0.105‡

      
  1. *p < 0.1, ** p < 0.05, *** p < 0.01.
  2. †As explored in the automobile travel literature, built environment (BE) indicators generally better serve for automobile travel than for nonmotorized travel (Gim 2015).
  3. ‡The R2 value is higher than that for the mediation model (see Table 2), but this moderation model is unchosen because no path coefficients are significant. As a whole, research variables explain more variations in automobile travel than in nonmotorized travel.
  4. Note This table is an extended version of Table 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gim, TH.T. Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship. Transportation 50, 1347–1398 (2023). https://doi.org/10.1007/s11116-022-10280-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-022-10280-1

Keywords

Navigation