Skip to main content
Log in

Optimal design and benefits of a short turning strategy for a bus corridor

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

We develop a short turning model using demand information from station to station within a single bus line-single period setting, aimed at increasing the service frequency on the more loaded sections to deal with spatial concentration of demand considering both operators’ and users’ costs. We find analytical expressions for optimal values of the design variables, namely frequencies (inside and outside the short cycle), capacity of vehicles and the position of the short turn limit stations. These expressions are used to analyze the influence of different parameters in the final solution. The design variables and the corresponding cost components for operators and users (waiting and in-vehicle times) are compared against an optimized normal operation scheme (single frequency). Applications on actual transit corridors exhibiting different demand profiles are conducted, calculating the optimal values for the design variables and the resulting benefits for each case. Results show the typical demand configurations that are better served using a short turn strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Results from changes in attraction of trips are analogous to those from changes in generation, as shown in Tirachini (2007).

  2. This result depends on the fact that the load in the segment after station 1 is lower than after stations 2, 3 and 4 (Fig. 2b). In general, if demands outside the short turning (stations 1–4) were similar, the distance to the short turn would play a role, as the farther a station to a existing short turn is, the higher the operator cost to include that station.

References

  • Ceder, A., Stern, H.I.: Deficit function bus scheduling with deadheading trip insertion for fleet size reduction. Transp. Sci. 15(4), 338–363 (1981)

    Article  Google Scholar 

  • Ceder, A.: Optimal design of transit short-turn trips. Transp. Res. Rec. 1221, 8–22 (1989)

    Google Scholar 

  • Ceder, A.: Public transport timetabling and vehicle scheduling. In: Lam, W., Bell, M. (eds.) Advanced Modeling for Transit Operations and Service Planning, pp. 31–57. Pergamon Imprint, Elsevier Science Ltd. Pub, Amsterdam (2003a)

    Google Scholar 

  • Ceder, A.: Designing public transport network and route. In: Lam, W., Bell, M. (eds.) Advanced Modeling for Transit Operations and Service Planning, pp. 59–91. Pergamon Imprint, Elsevier Science Ltd. Pub, Amsterdam (2003b)

    Google Scholar 

  • Ceder, A.: Improved lower-bound fleet size for fixed and variable transit scheduling. 9th International Conference on Computer-Aided Scheduling of Public Transport (CASPT), August 9–11, 2004 San Diego, California, USA (2004)

  • Delle Site, P.D., Filippi, F.: Service optimization for bus corridors with short-turn strategies and variable vehicle size. Transp. Res. A 32(1), 19–28 (1998)

    Google Scholar 

  • Eberlein, X.J., Wilson, N.H.M., Barnhart, C., Bernstein, D.: The real-time deadheading problem in transit operations control. Transp. Res. B 32(2), 77–100 (1998)

    Article  Google Scholar 

  • Eberlein, X.J., Wilson, N.H.M., Bernstein, D.: Modeling real-time control strategies in public transit operations. In: N.H.M. Wilson (Ed.), Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems 471, pp. 325–346, Springer-Verlag, Heidelberg (1999)

  • Furth, P.: Alternating deadheading in bus route operations. Transp. Sci. 19(1), 13–28 (1985)

    Article  Google Scholar 

  • Furth, P.: Zonal route design for transit corridors. Transp. Sci. 20(1), 1–12 (1986)

    Article  Google Scholar 

  • Furth, P.: Short turning on transit routes. Transp. Res. Rec. 1108, 42–52 (1987)

    Google Scholar 

  • Jansson, J.O.: A simple bus line model for optimization of service frequency and bus size. J. Transp. Econ. Policy 14, 53–80 (1980)

    Google Scholar 

  • Jara-Díaz, S.R., Gschwender, A.: Towards a general microeconomic model for the operation of public transport. Transp. Rev. 23(4), 453–469 (2003)

    Article  Google Scholar 

  • Jara-Diaz, S.R., Tirachini, A., Cortés, C.E.: Modeling public transport corridors with aggregate and disaggregate demand. J. Transp. Geogr. 16, 430–435 (2008)

    Article  Google Scholar 

  • Jordan, W.C., Turnquist, M.A.: Zone scheduling of bus routes to improve service reliability. Transp. Sci. 13(3), 242–268 (1979)

    Article  Google Scholar 

  • Mohring, H.: Optimization and scale economies in urban bus transportation. Am. Econ. Rev. 62, 591–604 (1972)

    Google Scholar 

  • Oldfield, R.H., Bly, P.H.: An analytic investigation of optimal bus size. Transp. Res. 22B, 319–337 (1988)

    Article  Google Scholar 

  • Osuna, E.E., Newell, G.F.: Control strategies for an idealized public transportation system. Transp. Sci. 6, 52–72 (1972)

    Article  Google Scholar 

  • Tirachini, A.: Estrategias de asignación de flota en un corredor de transporte público. MSc Thesis, Universidad de Chile (2007)

  • Tirachini, A., Cortés, C.E.: Disaggregated modeling of pre-planned short-turning strategies in transit corridors. CD Proceedings, Transportation Research Board (TRB) 86th Annual Meeting, Washington DC, USA (2007)

  • Vijayaraghavan, T.A., Anantharmaiah, K.M.: Fleet assignment strategies in urban transportation using express and partial services. Transp. Res. A 29(2), 157–171 (1995)

    Google Scholar 

  • Welding, P.I.: The instability of a close-interval service. Oper. Res. Q. 8(3), 133–148 (1957)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially financed by grants 1061261 and 1080140 from Fondecyt, Chile, and the Millennium Institute “Complex Engineering Systems” (ICM: P-05-004-F, CONICYT: FBO16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Tirachini.

Appendices

Appendix A. Definition of g i functions

  • g0 is the total running time:

$$ g_{0} = 2\sum\limits_{k = 1}^{N - 1} {R_{k} } $$
  • g1 and g2 are in the waiting and cycle times, g1 is the demand benefited by the strategy (origin and destination inside the short turn), while g2 are the passenger whose origin or destination are outside the short turn.

$$ g_{1} (s_{0} ,s_{1} ) = \sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {\lambda_{k}^{ + } (k + 1,s_{1} )} + \sum\limits_{{k = s_{0} + 1}}^{{s_{1} }} {\lambda_{k}^{ + } (s_{0} ,k - 1)} $$
$$ g_{2} (s_{0} ,s_{1} ) = \sum\limits_{k = 1}^{{s_{0} - 1}} {\lambda_{k}^{1 + } } + \sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {\lambda_{k}^{ + } (s_{1} + 1,N)} + \sum\limits_{{k = s_{1} }}^{N} {\lambda_{k}^{1 + } } + \sum\limits_{{k = s_{1} + 1}}^{N} {\lambda_{k}^{2 + } } + \sum\limits_{{k = s_{0} + 1}}^{{s_{1} }} {\lambda_{k}^{ + } (1,s_{0} - 1)} + \sum\limits_{k = 1}^{{s_{0} }} {\lambda_{k}^{2 + } } $$
  • g3 is the running time for vehicles inside the short turn

$$ g_{3} (s_{0} ,s_{1} ) = 2\sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {R_{k} } $$
  • g4 is the in-vehicle time experienced by passengers

$$ g_{4} = \sum\limits_{k = 1}^{N} {\sum\limits_{l = 1}^{N} {\lambda_{kl} \sum\limits_{i = k}^{l - 1} {R_{i} } } } $$
  • g5 and g6 are the factors to calculate the total dwell time of passengers benefited by the strategy and the others, respectively.

$$ g_{5} (s_{0} ,s_{1} ) = g_{5}^{1} (s_{0} ,s_{1} ) + g_{5}^{2} (s_{0} ,s_{1} ) $$
$$ g_{6} (s_{0} ,s_{1} ) = g_{6}^{1} (s_{0} ,s_{1} ) + g_{6}^{2} (s_{0} ,s_{1} ) $$

where

$$ \begin{aligned} g_{5}^{1} (s_{0} ,s_{1} ) = & \sum\limits_{k = 1}^{{s_{0} - 1}} {\sum\limits_{{l = s_{0} + 1}}^{{s_{1} }} {\lambda_{kl} \sum\limits_{{i = s_{0} }}^{l - 1} {\lambda_{i}^{ + } (i + 1,s_{1} )} } } + \sum\limits_{k = 1}^{{s_{0} - 1}} {\sum\limits_{{l = s_{1} + 1}}^{N} {\lambda_{kl} \sum\limits_{{i = s_{0} }}^{{s_{1} - 1}} {\lambda_{i}^{ + } (i + 1,s_{1} )} } } \\ + \sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {\sum\limits_{l = k + 1}^{{s_{1} }} {\lambda_{kl} \sum\limits_{i = k}^{l - 1} {\lambda_{i}^{1 + } } } } + \sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {\sum\limits_{{l = s_{1} + 1}}^{N} {\lambda_{kl} \sum\limits_{i = k}^{{s_{1} - 1}} {\lambda_{i}^{ + } (i + 1,s_{1} )} } } \\ \end{aligned} $$
$$ \begin{aligned} g_{5}^{2} (s_{0} ,s_{1} ) = & \sum\limits_{{k = s_{1} + 1}}^{N} {\sum\limits_{{l = s_{0} }}^{{s_{1} - 1}} {\lambda_{kl} \sum\limits_{i = l + 1}^{{s_{1} }} {\lambda_{i}^{ + } (s_{0} ,i - 1)} } } + \sum\limits_{{k = s_{1} + 1}}^{N} {\sum\limits_{l = 1}^{{s_{0} - 1}} {\lambda_{kl} \sum\limits_{{i = s_{0} + 1}}^{{s_{1} }} {\lambda_{i}^{ + } (s_{0} ,i - 1)} } } \\ + \sum\limits_{{k = s_{0} + 1}}^{{s_{1} }} {\sum\limits_{{l = s_{0} }}^{k - 1} {\lambda_{kl} \sum\limits_{i = l + 1}^{k} {\lambda_{i}^{2 + } } } } + \sum\limits_{{k = s_{0} + 1}}^{{s_{1} }} {\sum\limits_{l = 1}^{{s_{0} - 1}} {\lambda_{kl} \sum\limits_{{i = s_{0} + 1}}^{k} {\lambda_{i}^{ + } (s_{0} ,i - 1)} } } \\ \end{aligned} $$
$$ \begin{aligned} g_{6}^{1} (s_{0} ,s_{1} ) = & \sum\limits_{k = 1}^{{s_{0} - 1}} {\sum\limits_{l = k + 1}^{{s_{0} }} {\lambda_{kl} \sum\limits_{i = k}^{l - 1} {\lambda_{i}^{1 + } } } } + \sum\limits_{k = 1}^{{s_{0} - 1}} {\sum\limits_{{l = s_{0} + 1}}^{{s_{1} }} {\lambda_{kl} \left[ {\sum\limits_{i = k}^{{s_{0} - 1}} {\lambda_{i}^{1 + } + \sum\limits_{{i = s_{0} }}^{l - 1} {\lambda_{i}^{ + } (s_{1} + 1,N)} } } \right]} } \\ + \sum\limits_{k = 1}^{{s_{0} - 1}} {\sum\limits_{{l = s_{1} + 1}}^{N} {\lambda_{kl} \left[ {\sum\limits_{i = k}^{{s_{0} - 1}} {\lambda_{i}^{1 + } + \sum\limits_{{i = s_{0} }}^{{s_{1} - 1}} {\lambda_{i}^{ + } (s_{1} + 1,N)} } + \sum\limits_{{i = s_{1} }}^{l - 1} {\lambda_{i}^{1 + } } } \right]} } \\ + \sum\limits_{{k = s_{0} }}^{{s_{1} - 1}} {\sum\limits_{{l = s_{1} + 1}}^{N} {\lambda_{kl} \left[ {\sum\limits_{i = k}^{{s_{1} - 1}} {\lambda_{i}^{ + } (s_{1} + 1,N) + \sum\limits_{{i = s_{1} }}^{l - 1} {\lambda_{i}^{1 + } } } } \right]} } + \sum\limits_{{k = s_{1} }}^{N} {\sum\limits_{l = k + 1}^{N} {\lambda_{kl} \sum\limits_{i = k}^{l - 1} {\lambda_{i}^{1 + } } } } \\ \end{aligned} $$
$$ \begin{gathered} g_{6}^{2} (s_{0} ,s_{1} ) = \sum\limits_{{k = s_{1} + 1}}^{N} {\sum\limits_{{l = s_{1} }}^{k - 1} {\lambda_{kl} \sum\limits_{i = l + 1}^{k} {\lambda_{i}^{2 + } } } } + \sum\limits_{{k = s_{1} + 1}}^{N} {\sum\limits_{{l = s_{0} }}^{{s_{1} - 1}} {\lambda_{kl} \left[ {\sum\limits_{{i = s_{1} + 1}}^{k} {\lambda_{i}^{2 + } + \sum\limits_{i = l + 1}^{{s_{1} }} {\lambda_{i}^{ + } (1,s_{0} - 1)} } } \right]} } \hfill \\ + \sum\limits_{{k = s_{1} + 1}}^{N} {\sum\limits_{l = 1}^{{s_{0} - 1}} {\lambda_{kl} \left[ {\sum\limits_{{i = s_{1} + 1}}^{k} {\lambda_{i}^{2 + } + \sum\limits_{{i = s_{0} + 1}}^{{s_{1} }} {\lambda_{i}^{ + } (1,s_{0} - 1)} } + \sum\limits_{i = l + 1}^{{s_{0} }} {\lambda_{i}^{2 + } } } \right]} } \hfill \\ + \sum\limits_{{k = s_{0} + 1}}^{{s_{1} }} {\sum\limits_{l = 1}^{{s_{0} - 1}} {\lambda_{kl} \left[ {\sum\limits_{{i = s_{0} + 1}}^{k} {\lambda_{i}^{ + } (1,s_{0} - 1) + \sum\limits_{i = l + 1}^{{s_{0} }} {\lambda_{i}^{1 + } } } } \right]} } + \sum\limits_{k = 1}^{{s_{0} }} {\sum\limits_{l = 1}^{k - 1} {\lambda_{kl} \sum\limits_{i = l + 1}^{k} {\lambda_{i}^{2 + } } } } \hfill \\ \end{gathered} $$

Appendix B. Load of vehicles between stations

  1. 1.

    Load of vehicles serving the entire corridor (fleet A):

Direction 1

$$ \pi_{k}^{1} = \left\{ {\begin{array}{*{20}c} {\pi_{k - 1}^{1} + {\frac{{\lambda_{k}^{1 + } }}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{1 - } }}{{f_{\text{A}} }}}} \hfill & {{\text{if}}\;1 \le k \le s_{0} - 1} \hfill \\ {\pi_{k - 1}^{1} + {\frac{{\lambda_{k}^{ + } (k,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}} + {\frac{{\lambda_{k}^{ + } (s_{1} + 1,N)}}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{ - } (1,s_{0} - 1)}}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{ - } (s_{0} ,k - 1)}}{{f_{\text{A}} + f_{\text{B}} }}}} \hfill & {{\text{if}}\;s_{0} \le k \le s_{1} - 1} \hfill \\ {\pi_{k - 1}^{1} + {\frac{{\lambda_{k}^{1 + } }}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{1 - } }}{{f_{\text{A}} }}}} \hfill & {{\text{if}}\;s_{1} \le k \le N} \hfill \\ \end{array} } \right. $$

Direction 2

$$ \pi_{k}^{2} = \left\{ {\begin{array}{*{20}c} {\pi_{k + 1}^{2} + {\frac{{\lambda_{k}^{2 + } }}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{2 - } }}{{f_{\text{A}} }}}} \hfill & {{\text{if}}\;s_{1} + 1 \le k \le N} \hfill \\ {\pi_{k + 1}^{2} + {\frac{{\lambda_{k}^{ + } (s_{0} ,k - 1)}}{{f_{\text{A}} + f_{\text{B}} }}} + {\frac{{\lambda_{k}^{ + } (1,s_{0} - 1)}}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{ - } (s_{1} + 1,N)}}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{ - } (k + 1,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}}} \hfill & {{\text{if}}\;s_{0} + 1 \le k \le s_{1} } \hfill \\ {\pi_{k + 1}^{2} + {\frac{{\lambda_{k}^{2 + } }}{{f_{\text{A}} }}} - {\frac{{\lambda_{k}^{2 - } }}{{f_{\text{A}} }}}} \hfill & {{\text{if}}\;1 \le k \le s_{0} } \hfill \\ \end{array} } \right. $$
  1. 2.

    Load of vehicles performing short turning (fleet B):

Direction 1

$$ \tilde{\pi }_{k}^{1} = \left\{ {\begin{array}{*{20}c} 0 \hfill & {{\text{if}}\;1 \le k \le s_{0} - 1} \hfill \\ {\tilde{\pi }_{k - 1}^{1} + {\frac{{\lambda_{k}^{ + } (k,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}} - {\frac{{\lambda_{k}^{ - } (s_{0} ,k - 1)}}{{f_{\text{A}} + f_{\text{B}} }}}} \hfill & {{\text{if}}\;s_{0} \le k \le s_{1} - 1} \hfill \\ 0 \hfill & {{\text{if}}\;s_{1} \le k \le N} \hfill \\ \end{array} } \right. $$

Direction 2

$$ \tilde{\pi }_{k}^{2} = \left\{ {\begin{array}{*{20}c} 0 \hfill & {{\text{if}}\;s_{1} + 1 \le k \le N} \hfill \\ {\pi_{k + 1}^{2} + {\frac{{\lambda_{k}^{ + } (s_{0} ,k - 1)}}{{f_{\text{A}} + f_{\text{B}} }}} - {\frac{{\lambda_{k}^{ - } (k + 1,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}}} \hfill & {{\text{if}}\;s_{0} + 1 \le k \le s_{1} } \hfill \\ 0 \hfill & {{\text{if}}\;1 \le k \le s_{0} } \hfill \\ \end{array} } \right. $$

After applying the short-turning strategy, the maximum load will correspond to some segment, which can belong to either direction 1 or 2. However, by observing the recursive form of the load equations above, we can establish the following:

  • If the maximum load occurs along direction 1, then we can say that

$$ \eta K = \pi_{\max }^{1} = {\frac{{\varphi_{0}^{1} (s_{0} ,s_{1} )}}{{f_{\text{A}} }}} + {\frac{{\varphi_{1}^{1} (s_{0} ,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}} $$
  • Otherwise, if the maximum load occur along direction 2, then we can say that

$$ \eta K = \pi_{\max }^{2} = {\frac{{\varphi_{0}^{2} (s_{0} ,s_{1} )}}{{f_{\text{A}} }}} + {\frac{{\varphi_{1}^{2} (s_{0} ,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}} $$

Thus, a generic relation between the design capacity of buses and the frequencies f A and f B can be established in the way summarized in Eq. 14:

$$ K = {\frac{1}{\eta }}\left( {{\frac{{\vartheta_{0} (s_{0} ,s_{1} )}}{{f_{\text{A}} }}} + {\frac{{\vartheta_{1} (s_{0} ,s_{1} )}}{{f_{\text{A}} + f_{\text{B}} }}}} \right) $$

where, if the maximum load happens on a segment that belongs to direction 1, then ϑ 0(s 0, s 1) = φ 10 (s 0, s 1) and ϑ 1(s 0, s 1) = φ 11 (s 0, s 1). Otherwise, if the maximum load occurs on a segment that belongs to direction 2, then ϑ 0(s 0, s 1) = φ 20 (s 0, s 1) and ϑ 1(s 0, s 1) = φ 21 (s 0, s 1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirachini, A., Cortés, C.E. & Jara-Díaz, S.R. Optimal design and benefits of a short turning strategy for a bus corridor. Transportation 38, 169–189 (2011). https://doi.org/10.1007/s11116-010-9287-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-010-9287-8

Keywords

Navigation