Advertisement

Photonic Network Communications

, Volume 33, Issue 2, pp 231–242 | Cite as

Error performance of optically preamplified hybrid BPSK-PPM systems with transmitter and receiver imperfections

  • Taha LandolsiEmail author
  • Aly F. Elrefaie
  • Sanaa Hamid
  • Mohamed S. Hassan
Article
  • 135 Downloads

Abstract

In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.

Keywords

Coherent and direct detection Extinction ratio Probability of bit error Pulse position modulation Phase offset 

References

  1. 1.
    Phillips, A., Cryan, R., Senior, J.: Performance evaluation of optically preamplified PPM systems. Photon. Technol. Lett. IEEE 6(5), 651–653 (1994)CrossRefGoogle Scholar
  2. 2.
    Phillips, A., Cryan, R., Senior, J.: Optically preamplified pulse-position modulation for fibre-optic communication systems. Optoelectron. IEE Proc. 143(2), 153–159 (1996)CrossRefGoogle Scholar
  3. 3.
    Kiasaleh, K.: Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Trans. Commun. 53(9), 1455–1461 (2005)CrossRefGoogle Scholar
  4. 4.
    Caplan, D., Robinson, B., Murphy, R., Stevens, M.: Demonstration of 2.5 Gslots/s optically-preamplified M-PPM with 4 photons/bit receiver sensitivity. In: Proceedings of the 2005 OFC/NFOEC, pp. 1–3. (2005)Google Scholar
  5. 5.
    Caplan, D.: Laser communication transmitter and receiver design. J. Opt. Fiber Commun. Rep. 4(5), 225–362 (2007)CrossRefGoogle Scholar
  6. 6.
    Edwards, B.L., Israel, D., Wilson, K., Moores, J.D., Fletcher, A.S.: The laser communications relay demonstration. In: The 2012 International Conference on Space Optical Systems and Applications (ICSOS), pp. 1–9. (2012)Google Scholar
  7. 7.
    Chandrasekhar, S., Liu, X., Wood, T.H., Tkach, R.W.: High sensitivity modulation formats. In: Proceedings of the 2012 OFC/NFOEC, pp. 1–3. (2012)Google Scholar
  8. 8.
    Landolsi, T., Elrefaie, A.: Error performance of preamplified optical PPM systems with finite extinction ratios. J. Opt. Fiber Technol. 20, 365–368 (2014)CrossRefGoogle Scholar
  9. 9.
    Landolsi, T., Elrefaie, A.: Performance evaluation of optically preamplified PPM systems with dual-polarized ASE noise and finite extinction ratios. IEEE Trans. Commun. 62(10), 3644–3651 (2014)CrossRefGoogle Scholar
  10. 10.
    Seimetz, M., Weinert, C.M.: Options, feasibility, and availability of \(2\times 4\) \(90^{\circ }\) hybrids for coherent optical systems. IEEE J. Lightwave Technol. 24(3), 1317–1322 (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, X., Wood, T., Tkach, R., Chandrasekhar, S.: Demonstration of record sensitivities in optically preamplified receivers by combining PDM-QPSK and M-ary pulse-position modulation. J. Lightwave Technol. 30(4), 406–413 (2012)CrossRefGoogle Scholar
  12. 12.
    Landolsi, T., Hassan, M.S., Elrefaie, A.F., Hamid, S.: Performance evaluation of optically-preamplified hybrid QPSK M-ary PPM systems with finite extinction ratios. J. Opt. Fiber Technol. 25, 33–38 (2015)CrossRefGoogle Scholar
  13. 13.
    Yu, M., et al.: Nyquist-mPPM-QPSK modulation for power and spectrum efficient optical communications. In: 2016 Optical Fiber Communications Conference (OFC), pp. 1–3. (2016)Google Scholar
  14. 14.
    Pauer, M., Winzer, P.: Impact of extinction ratio on return-to-zero coding gain in optical noise limited receivers. Photon. Technol. Lett. IEEE 15(6), 879–881 (2003)CrossRefGoogle Scholar
  15. 15.
    Wei, H., Elrefaie, A.F., Xue, X., Wang, S.Y.: Generation of Optical Signals with Return-to-Zero Format. US Patent 2002/0196508 A1 (2002)Google Scholar
  16. 16.
    Hamid, S., Hassan, M., Elrefaie, A.: Performance of optically-preamplified PDM-BPSK M-ary PPM and PDM-QPSK-M-ary PPM systems with finite extinction ratio. In: 2015 IEEE 8th GCC Conference and Exhibition (GCCCE), pp. 1–6. (2015)Google Scholar
  17. 17.
    Kazovsky, L.G.: Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements. IEEE J. Lightwave Technol. 4(2), 182–195 (1986)CrossRefGoogle Scholar
  18. 18.
    Norimatsu, S., Iwashita, K.: Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time. IEEE J. Lightwave Technol. 10(3), 341–349 (1992)CrossRefGoogle Scholar
  19. 19.
    Geisler, D.J., et al.: Demonstration of 2.1 photon-per-bit sensitivity for BPSK at 9.94-Gb/s with rate-1/2 FEC. In: Proceedings of the 2013 OFC/NFOEC, pp. 1–3. (2013)Google Scholar
  20. 20.
    Zhang, S., Kam, P., Yu, C., Chen, J.: Decision-aided carrier phase estimation for coherent optical communications. IEEE J. Lightwave Technol. 28(11), 1597–1607 (2010)CrossRefGoogle Scholar
  21. 21.
    Prabhu, V.K.: PSK performance with imperfect carrier phase recovery. IEEE Trans. Aerosp. Electron. Syst. AES–12(2), 275–286 (1976)Google Scholar
  22. 22.
    Hamid, S.: Performance Evaluation of Optically Preamplified M-ary PPM Systems for Free-Space Optical Communications. Master’s thesis, American University of Sharjah (2012)Google Scholar
  23. 23.
    Olsson, N.A.: Lightwave systems with optical amplifiers. IEEE J. Lightwave Technol. 7(7), 1071–1082 (1989)CrossRefGoogle Scholar
  24. 24.
    Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective, chap. 4, 3rd edn. Morgan Kaufmann (2009)Google Scholar
  25. 25.
    Ho, K.P.: Phase-Modulated Optical Communication Systems, 1st edn. Springer, New York (2005)Google Scholar
  26. 26.
    Jeruchim, M.C., Balaban, P., Shanmugan, K.S.: Simulation of Communication Systems: Modeling, Methodology and Techniques, chap. 5, 2nd edn. Springer (2000)Google Scholar
  27. 27.
    Tychopoulos, A., Koufopavlou, O., Tomkos, I.: FEC in optical communications–a tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications. IEEE Circuits Devices Mag. 22(6), 79–86 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.American University of SharjahSharjahUnited Arab Emirates
  2. 2.W & Wsens DevicesLos AltosUSA
  3. 3.School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations