Photonic Network Communications

, Volume 27, Issue 3, pp 154–166 | Cite as

Provisioning of dynamic traffic in mixed-line-rate optical networks with launch power determination

  • Haydar CukurtepeEmail author
  • Massimo Tornatore
  • Aysegul Yayimli
  • Biswanath Mukherjee


In mixed-line-rate (MLR) networks, different line rates on different wavelengths can coexist on the same fiber. MLR architectures can be built over transparent optical networks, where the transmitted signals remain in the optical domain along the entire path. Along the transparent optical path, a signal experiences various physical layer impairments (PLIs), and its quality degrades as it travels through each optical component. One of the major factors that affect the transmission quality is the launch power of the optical signal. The power must be large enough to ensure noise resiliency at the receiver, but it must be below the limit where fiber nonlinearities distort the signal. Moreover, high launch power is disruptive not only for the actual lightpath itself but also for neighboring lightpaths, and this effect is particularly critical in MLR networks since advanced modulation techniques used for high line rates are highly susceptible to PLIs. In this study, we investigate the problem of determining the appropriate launch power for provisioning of dynamic connection requests in MLR networks. By setting the appropriate launch power for each connection, we aim to maximize the number of established connections. We propose two different heuristics to determine the appropriate launch power of a lightpath. Worst-case best-case average (WBA) is based on optical reach of signal in a transparent optical network. In impairment-aware launch power determination (I-ALPD), current state of the network and impairments are evaluated to determine the launch power. The proposed approaches are practical and can adapt to the needs of network operators. Simulation results show that the performances of the proposed approaches show better results than the existing schemes in terms of blocking probability and bandwidth blocking ratio.


Dynamic lightpath provisioning Impairment-aware provisioning Launch power determination Mixed-line-rate optical WDM networks 



This study is partly supported by The Scientific and Technology Research Council of Turkey.


  1. 1.
    Mukherjee, B.: Optical WDM Networks. Springer, Berlin (2006)Google Scholar
  2. 2.
    Ramaswami, R., Sivarajan, K.N., Sasaki, G.H.: Optical Networks: A Practical Perspective. Elsevier, Amsterdam (2010)Google Scholar
  3. 3.
    Bononi, A., Bertolini, M., Serena, P., Bellotti, G.: Cross-phase modulation induced by OOK channels on higher-rate DQPSK and coherent QPSK channels. IEEE/OSA J. Lightwave Technol. 27, 3974–3983 (2009)CrossRefGoogle Scholar
  4. 4.
    Alfiad, M.S., Kuschnerov, M., Wuth, T., Xia, T.J., Wellbrock, G., Schmidt, E., van den Borne, D., Spinnler, B., Weiske, C.J., de Man, E., Napoli, A., Finkenzeller, M., Spaelter, S., Rehman, M., Behel, J., Chbat, M., Stachowiak, J., Peterson, D., Lee, W., Pollock, M., Basch, B., Chen, D., Freiberger, M., Lankl, B., de Waardt, H.: 111 Gb/s Transmission over 1040 km field-deployed fiber with 10G/40G neighbors. IEEE Photon. Technol. Lett. 21, 615–617 (2009)CrossRefGoogle Scholar
  5. 5.
    Azodolmolky, S., Klonidis, D., Tomkos, I., Yabin, Y., Saradhi, C., Salvadori, E., Gunkel, M., Telekom, D., Manousakis, K., Vlachos, K., Varvarigos, E., Nejabati, R., Simeonidou, D., Eiselt, M., Comellas, J., Sole-Pareta, J., Simonneau, C., Bayart, D., Staessens, D., Colle, D., Pickavet, M.: A dynamic impairment-aware networking solution for transparent mesh optical networks. IEEE Commun. Mag 47, 38–47 (2009)CrossRefGoogle Scholar
  6. 6.
    Simmons, J.M.: On determining the optimal optical reach for long haul network. IEEE/OSA J. Lightwave Technol. 23, 1039–1048 (2005)CrossRefGoogle Scholar
  7. 7.
    Sambo, N., Secondini, M., Cugini, F., Bottari, G., Iovanna, P., Cavaliere, F., Castoldi, P.: Enforcing QoT via PCE in multi bit-rate WSONs. IEEE Commun. Lett. 15, 452–454 (2011)CrossRefGoogle Scholar
  8. 8.
    Paolucci, F., Sambo, N., Cugini, F., Giorgetti, A., Castoldi, P.: Experimental demonstration of impairment-aware PCE for multi-bit-rate WSONs. IEEE/OSA J. Opt. Commun. Netw. 3, 610–619 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Brandt-Pearce, M., Subramaniam, S.: Grooming and RWA in translucent dynamic mixed-line-rate WDM networks with impairments. In: Proceedings of OFC (2012)Google Scholar
  10. 10.
    Cukurtepe, H., Yayimli, A., Mukherjee, B.: Inverse multiplexing gain considering physical layer impairments in mixed line rate networks. In: Proceedings of ISCC, Cappadocia, Turkey (2012)Google Scholar
  11. 11.
    Cukurtepe, H.,Tornatore, M., Yayimli, A., Mukherjee, B.: Impairment-aware lightpath provisioning in mixed line rate networks. In: Proceedings of IEEE ANTS’12, Bengalore, India (2012)Google Scholar
  12. 12.
    Cukurtepe, H., Yayimli, A., Mukherjee, B.: Impairment-aware lightpath provisioning using inverse multiplexing in mixed-line-rate networks. Opt. Switch. Netw. 11, 44–52 (2014)CrossRefGoogle Scholar
  13. 13.
    Deng, T., Subramaniam, S.: Source power management in transparent wavelength-routed mesh networks. In: Proceedings of ICC (2004)Google Scholar
  14. 14.
    Coelho, L., Gaete, O., Schmidt, E., Spinnler, B., Hanik, N.: Global optimization of RZ-DPSK and RZ-DQPSK systems at various data rates. In: Proceedings of OFC (2009)Google Scholar
  15. 15.
    Nag, A., Tornatore, M., Mukherjee, B.: Power management in mixed line rate optical networks. In: Proceedings of Photonics in Switching (PS), Monterey, CA, US (2010)Google Scholar
  16. 16.
    Gao, G., Zhang, J., Gu, W., Feng, Z., Te, Y.: Dynamic power control for mixed line rate transparent wavelength switched optical networks. In: Proceedings of ECOC, Torino, Italy (2010)Google Scholar
  17. 17.
    Coiro, A., Listanti, M., Valenti, A., Matera, F.: Power-aware routing and wavelength assignment in multi-fiber optical networks. IEEE/OSA J. Opt. Commun. Netw. 3, 816–829 (2011)CrossRefGoogle Scholar
  18. 18.
    Chomycz, B.: Planning Fiber Optic Networks. McGraw-Hill, New York (2009)Google Scholar
  19. 19.
    Ramamurthy, B., Datta, D., Feng, H., Heritage, J., Mukherjee, B.: Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks. IEEE/OSA J. Lightwave Technol. 17, 1713–1723 (1999)CrossRefGoogle Scholar
  20. 20.
    Cantrell, C.D.: Transparent optical metropolitan-area networks. In: Proceedings of IEEE LEOS 16th Annual Meeting (2003)Google Scholar
  21. 21.
    Sambo, N., Secondini, M., Cugini, F., Bottari, G., Iovanna, P., Cavaliere, F., Castoldi, P.: Modeling and distributed provisioning in 10–40-100-Gb/s multi-rate wavelength switched optical networks. IEEE/OSA J. Lightwave Technol. 29, 1248–1257 (2011)CrossRefGoogle Scholar
  22. 22.
    Agrawal, G.: Fiber-Optic Communication Systems. Wiley, London (2010)CrossRefGoogle Scholar
  23. 23.
    Yuki, M., Hoshida, T., Tanimura, T., Oda, S., Nakamura, K., Vassilieva, O., Wang, X. Nakashima, H., Ishikawa, G., Rasmussen, J.C.: Transmission characteristics of (43 Gb/s) single-polarization and dual-polarization (RZ-DQPSK signals with co-propagating (11.1 Gb/s) NRZ channels over (NZ-DSF). In: Proceedings of OFC (2008)Google Scholar
  24. 24.
    Furst, C., Elbers, J., Wernz, H., Grisser, H., Herbst, S., Camera, M., Cavaliere, F., Ehrhardt, A., Breuer, D., Fritchze, D., Vorbeck, S., Schneiders, M. Weiershausen, W., Leppla, R., Wendler, J., Schrodel, M., Wuth, T., Fludger, C. Duthel, T., Milivojevic, B., Schulien, C.: Analysis of crosstalk in mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/s DWDM systems at 50 GHz channel spacing. In: Proceedings of OFC (2007) Google Scholar
  25. 25.
    Griesser, H., Elbers, J.: Influence of cross-phase modulation induced nonlinear phase noise on DQPSK signals from neighbouring OOK channels. In: Proceedings of ECOC, vol. 2 (2005)Google Scholar
  26. 26.
    Xia, T.J., Wellbrock, G., Peterson, D., Lee, W., Pollock, M., Basch, B., Chen, D., Freiberger, M., Alfiad, M., de Waardt, H., Kuschnerov, M., Lankl, B., Wuth, T., Schmidt, E., Spinnler, B., Weiske, C., de Man, E., Xie, C., van den Borne, D., Finkenzeller, M., Spaelter, S., Derksen, R., Rehman, M., Behel, J., Stachowiak, J., Chbat, M.: Multi-rate (111-Gb/s, 2\(\,\times\,\)43-Gb/s, and 8\(\times \)10.7-Gb/s) transmission at 50-GHz channel spacing over 1040-km field-deployed fiber. In: Proceedings of ECOC, Brussels, Belgium (2008)Google Scholar
  27. 27.
    Chan, K., Yum, T.P.: Analysis of least congested path routing in WDM lightwave networks. In: Proceedings of IEEE INFOCOM ’94, vol. 2, pp. 962–969 (1994)Google Scholar
  28. 28.
    Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17, 712–716 (1971)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ou, C., Mukherjee, B.: Survivable Optical WDM Networks. Kluwer, Dordrecht (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Haydar Cukurtepe
    • 1
    Email author
  • Massimo Tornatore
    • 2
    • 3
  • Aysegul Yayimli
    • 1
  • Biswanath Mukherjee
    • 3
  1. 1.Department of Computer EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.Politecnico di MilanoMilanItaly
  3. 3.University of CaliforniaDavisUSA

Personalised recommendations