Skip to main content
Log in

Interaction of Components in Cu–Fe Glass-Forming Melts with Titanium, Zirconium, and Hafnium. III. Modeling of Metastable Phase Transformations with Participation of Liquid Phase

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Theoretical bases for calculation of metastable phase transformations with participation of supercooled melts, such as immiscibility and glass formation, are considered. A dataset of the model parameters for the thermodynamic properties of phases in the Cu–Fe–(Ti, Zr, Hf) systems is presented for performing corresponding calculations in the framework of the CALPHAD method. The diagrams of metastable phase transformations with participation of supercooled liquid alloys and terminal solid solutions are calculated. The composition regions of metastable immiscibility of supercooled ternary liquid alloys are presented. The composition regions for producing rapidly quenched amorphous Cu–Fe–(Ti, Zr, Hf) alloys are theoretically estimated. The production of ternary immiscible rapidly quenched amorphous alloys in the composition region with x Me ≈ 0.1–0.2 is predicted. Bulk amorphous alloys are expected to be produced in the composition region with x Me ≈ 0.3–0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. A. Turchanin, P. G. Agraval, and I. V. Nikolaenko, “Thermodynamics of alloys and phase equilibria in the copper-iron system,” J. Phase Equilib., 24, No. 4, 307–319 (2003).

    Article  Google Scholar 

  2. T. A. Velikanova, M. V. Karpets, M. A. Turchanin, et al., “Manganese-like metastable phases in the Fe–Mo system: experimental study and thermodynamic modeling. II. Thermodynamic modeling of Fe–Mo metastable states,” Powder Metall. Met. Ceram., 49, Nos. 3–4, 207–214 (2010).

    Article  Google Scholar 

  3. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. III. Copper–chromium system,” Powder Metall. Met. Ceram., 45, Nos. 9–10, 457–467 (2006).

    Article  Google Scholar 

  4. M. A. Turchanin, T. Ya. Velikanova, L. A. Dreval, et al., “Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu–Fe–Ni system,” Powder Metall. Met. Ceram., 48, Nos. 11–12, 672–692 (2009).

    Article  Google Scholar 

  5. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper–scandium system,” Powder Metall. Met. Ceram., 45, Nos. 3–4, 143–152 (2006).

    Article  Google Scholar 

  6. M. A. Turchanin and P. G. Agraval, “Thermodynamic assessment of the copper−hafnium system,” Powder Metall. Met. Ceram., 47, Nos. 3–4, 223–233 (2008).

    Article  Google Scholar 

  7. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. II. Cu–Zr and Ti–Zr systems,” Powder Metall. Met. Ceram., 47, Nos. 7–8, 428–446 (2008).

    Article  Google Scholar 

  8. M. A. Turchanin, T. Ya. Velikanova, P. G. Agraval, et al., “Thermodynamic assessment of the Cu–Ti–Zr system. III. Cu–Ti–Zr system,” Powder Metall. Met. Ceram., 47, Nos. 9–10, 586–606 (2008).

    Article  Google Scholar 

  9. R. B. Schwarz, P. Nash, and D. Turnbull, “The use of thermodynamic models in the prediction of the glass-forming range of binary alloys,” J. Mater. Res., 2, No. 4, 456–460 (1987).

    Article  Google Scholar 

  10. R. Bormann, F. Gärtner, and K. Zöltzer, “Application of the CALPHAD method for the prediction of amorphous phase formation,” J. Less Common Met., 145, 19–29 (1988).

    Article  Google Scholar 

  11. N. Saunders and A. P. Miodownik, “Free energy criteria for glass forming alloys,” Ber. Bunsen Ges. Phys. Chem., 87, No. 9, 830–834 (1983).

    Article  Google Scholar 

  12. A. T. Dinsdale, “SGTE data for pure elements,” Calphad, 15, No. 4, 317–425 (1991).

    Article  Google Scholar 

  13. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Interaction of components in Cu–Fe glass-forming melts with titanium, zirconium, and hafnium. II. Temperature–concentration dependence of thermodynamic mixing functions,” Powder Metall. Met. Ceram., 56, No. 5–6, 323–332 (2017).

    Article  Google Scholar 

  14. M. Hillert and M. Jarl, “A model for alloying effects in ferromagnetic metals,” Calphad, 2, 227–238 (1978).

    Article  Google Scholar 

  15. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. I. Cu−Ti system,” Powder Metall. Met. Ceram., 47, Nos. 5–6, 344–360 (2008).

    Article  Google Scholar 

  16. P. Agraval, M. Turchanin, and L. Dreval, “Thermodynamic assessment of the glass-forming Fe–(Ti, Zr, Hf) systems,” in: XVIII Int. Sci. Conf. New Technologies and Achievements in Metallurgy, Material Engineering and Production Engineering, Czestochowa, Poland, May 31–June 2 (2017), Series Monografie, No. 68, Vol. 1, pp. 47–52.

  17. K. C. H. Kumar, P. Wollants, and L. Delaey, “Thermodynamic reassessment and calculation of Fe–Ti phase diagram,” Calphad, 18, No. 2, 223–234 (1994).

    Article  Google Scholar 

  18. M. Sakata, N. Cowlam, and H. A. Davies, “Chemical short-range order in liquid and amorphous 66:34 copper–titanium alloys,” J. Phys. F. Met. Phys., 11, No. 7, L157–L162 (1981).

    Article  Google Scholar 

  19. K. H. J. Buschow, “Effect of short-range ordering on the thermal stability of amorphous titanium-copper alloys,” Scr. Metall., 17, No. 9, 1135–1139 (1983).

    Article  Google Scholar 

  20. C. G. Woychik, D. H. Lowndes, and T. B. Massalski, “Solidification structures in melt-spun and pulsed laser-quenched copper-titanium alloys,” Acta Metall., 33, No. 10, 1861–1871 (1985).

    Article  Google Scholar 

  21. J. Reeve, G. P. Gregan, and H. A. Davies, “Glass forming ability studies in the copper-titanium system,” Proc. 5th Int. Conf. Rapidly Quenched Metals (1984, North-Holland, Amsterdam), Amsterdam (1985), Vol. 1, pp. 203–206.

  22. M. Dehm, L. Deimling, P. Haeberle, et al., “Crystallization behavior of rapidly quenched and mechanically alloyed amorphous materials,” J. Therm. Anal., 35, No. 2, 555–568 (1989).

    Article  Google Scholar 

  23. K. H. J. Buschow, “Thermal stability of amorphous Zr–Cu alloys,” J. Appl. Phys., 52, 3319–3323 (1981).

    Article  Google Scholar 

  24. I. Ansara, A. Pasturel, and K. H. J. Buschow, “Enthalpy effects in amorphous alloys and intermetallic compounds in the system Zr–Cu,” Phys. Status Solidi A, 69, No. 2, 447–453 (1982).

    Article  Google Scholar 

  25. E. Kneller, Y. Khan, and U. Gorres, “The alloy system copper–zirconium. Part II. Crystallization of the glasses from Cu70Zr30 to Cu26Zr74,” Z. Metallkd., 77, 152–163 (1986).

    Google Scholar 

  26. K. H. J. Buschow, “Short-range order and thermal stability in amorphous alloys,” J. Phys. F: Met. Phys., 14, No. 3, 593–607 (1984).

    Article  Google Scholar 

  27. Z. Altounian, E. Batalla, and J. O. Strom-Olsen, “Crystallization characteristics of late transition metal–Zr glasses around the composition M90Zr10,” J. Appl. Phys., 59, No. 7, 2364–2367 (1986).

    Article  Google Scholar 

  28. H. U. Krebs, “Comparison of sputtered, solid-state-reacted and melt-spun Zr–Fe alloys,” J. Less Common Met., 145, 97–103 (1988).

    Article  Google Scholar 

  29. K. H. J. Buschow, “Thermal stability of amorphous alloys,” Solid State Commun., 35, No. 3, 233–236 (1980).

    Article  Google Scholar 

  30. I. Kanazawa, T. Oguchi, and T. Ohata, “Time-differential perturbed-angular-correlation studies of the amorphous copper-hafnium alloys prepared by mechanical alloying and melt spinning,” Phys. Rev. B: Condens. Matter, 47, No. 13, 7732–7735 (1993).

    Article  Google Scholar 

  31. D. H. Ryan, J. M. D. Coey, and J. O. Ström-Olsen, “Magnetic properties of iron-rich Fe-Hf glasses,” J. Magn. Magn. Mater., 67, No. 2, 148–154 (1987).

    Article  Google Scholar 

  32. A. Inoue and W. Zhang, “Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods,” Mat. Trans., 45, No. 2, 584–587 (2004).

    Article  Google Scholar 

  33. D. Xu, B. Lohwongwatana, G. Duanet, et al., “Bulk metallic glass formation in binary Cu-rich alloy series–Cu100–x Zr x (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass,” Acta Mater., 52, No. 9, 2621–2624 (2004).

    Article  Google Scholar 

  34. G. Duan, D. Xu, and W. L. Johnson, “High copper content bulk glass formation in bimetallic Cu–Hf system,” Metall. Mater. Trans. A, 36, No. 2, 455–458 (2005).

    Article  Google Scholar 

  35. R. A. Dunlap, G. Stroink, Z. M. Stadnik, et al., “Properties of as-quenched and hydrogenated Cu–Fe–Ti alloys,” Mater. Sci. Eng., 99, Nos. 1–2, 543–546 (1988).

    Article  Google Scholar 

  36. S. P. Alisova, N. V. Lutskaya, P. V. Budberg, et al., “Phase constitution of the TiCu–TiNi–TiCo (TiFe) systems in equilibrium and metastable states,” Izv. RAN. Met., No. 3, 222–229 (1993).

  37. M. Taniwaki, E. Hatta, and M. Maeda, “Local structure and stability of amorphous Cu–Fe–Zr alloys,” Mater. Sci. Eng., 99, Nos. 1–2, 285–288 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Agraval.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 7–8 (516), pp. 130–142, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agraval, P.G., Dreval, L.A. & Turchanin, M.A. Interaction of Components in Cu–Fe Glass-Forming Melts with Titanium, Zirconium, and Hafnium. III. Modeling of Metastable Phase Transformations with Participation of Liquid Phase. Powder Metall Met Ceram 56, 463–472 (2017). https://doi.org/10.1007/s11106-017-9917-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9917-1

Keywords

Navigation