Skip to main content
Log in

Effect of Electromagnetic Field in Hard Metal Technique

  • THEORY AND TECHNOLOGY OF SINTERING, THERMAL AND THERMOCHEMICAL TREATMENT
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The publications of the effect of electric, magnetic, or complex electromagnetic fields applied in addition to well-known conventional processing of WC–Co powder composites are analyzed. Two types of composite processing are considered: conduction and induction heat treatment. The basic properties of equipment used by techniques for processing the above composites are studied based on the existing equipment. The effect of some features of the structure of materials on their properties is analyzed. A special attention is paid to structure defects, such as cracks and the continuity of brittle (WC) and ductile (Co) phases. Their effect on the strength, wear resistance, elasticity, fracture toughness, and other properties of hard metals is considered in details. This study provides a number of recommendations for eliminating or minimizing the impact of defects on the structure and properties of powder composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. V. I. Tretyakov, Basics of Material Science and Production of Sintered Hard Metals [in Russian], Metallurgiya, Moscow (1976), p. 527.

  2. A. I. Raichenko, A. A. Baidenko, Yu. P. Vertebnyi, et al., Plant for Electric Discharge Sintering of Powder Products [in Russian], Inventor’s Certificate No. 818079 SSSR, December 3 (1979).

  3. K. Inoue, Electric Discharge Sintering Die. Matrix and Punches for Sintering Using Electric Current, Patent 25805 JP, Appl. 07.01.62. Publ. 09.02.74.

  4. G. F. Taylor, Apparatus for Making Hard Metal Compositions, Patent 1896854 US, Publ. 07.02.33; p. 6.

  5. A. I. Raitchenko, A. A. Raitchenko, E. S. Chernikova, and A. A. Miroshnichenko, “Analysis of electroconvective dissolution of a solid sphere in a current-carrying liquid,” Magn. Gidrodinam., No. 1, 71–76 (1994).

  6. A. I. Raitchenko, V. P. Popov, and A. V. Derevyanko, “Velocity and concentration fields in current-carrying liquid filling spherical layer space,” Magnetohydrodynamics, 34, No. 1, 79–84 (1998).

    Google Scholar 

  7. V. G. Levich, Physical–Chemical Hydrodynamics [in Russian], Nauka, Moscow (1959), p. 699.

  8. A. I. Raitchenko, Mathematical Theory of Diffusion in Applications [in Russian], Nauk. Dumka, Kiev (1981), p. 396.

  9. R. Honeycomb, Plastic Deformation of Metals [in Russian], Mir, Moscow (1972), p. 408.

  10. G. Gille, “Die Wirkung Energedissipativer Mechanismen auf die Festigkeit, Härte und Вruchzähigkeit von WC–Co–Hartmetallen” in: VI Int. Pulvermet. Tagung (Dresden, 1981), ZFW, Dresden (1981), pp. 1–23.

  11. F. McClinton and A. Argon, Deformation and Fracture of Materials [in Russian], Mir, Moscow (1970), p. 443.

  12. M. G. Loshak, Strength and Durability of Hard Metals [in Russian], Nauk. Dumka, Kiev (1984), p. 328.

  13. Yu. I. Golovin, V. M. Finkel’, V. M. Ivanov, and A. A. Sletkov, “Effect of current impulse on crack tip metal structure,” Fiz. Khim. Obrab. Mater., No. 6, 131–133 (1976).

  14. A. I. Raichenko, E. S. Chernikova, G. L. Burenkov, et al., Method for Hardening Hard Metals [in Russian], Inventor’s Certificate No. 1775947 SSSR, June 08 (1990).

  15. A. I. Raichenko, S. P. Shybaev, R. N. Seifi, et al., Method for Manufacturing Rock Cutting Tooth [in Russian], Inventor’s Certificate No. 1469698 SSSR, October 21 (1985).

  16. S. Huang, O. Van der Biest, and J. Vengels, “Pulsed electric current sintered Fe3Al bonded WC composites,” Int. J. Refr. Met. Hard Mater., 27, No. 6, 1019–1023 (2009).

    Article  Google Scholar 

  17. R. Porat and J. Malek, “Binder mean free-path determination in cemented carbide by coercive force and material composition,” Mater. Sci. Eng.: A, 105–106, 889–292 (1988).

  18. F. C. Dary, B. Roebuck, and M. G. Gee, “Effects of microstructure on the thermo-mechanical fatigue response of hardmetals using a new miniaturized testing rig,” Int. J. Refr. Met. Hard Mater., 17, Nos. 1–3, 45–53 (1999).

    Article  Google Scholar 

  19. A. D. Svenchanskii, Eddy-Current Heating: Physical Encyclopedia [in Russian], Vol. 2, Sovet. Entsicloped., Moscow (1962), p. 178.

  20. G. Leitner, W. Förster, W. Hermel, et al., “Sondersinterverfahren für Hartmetalle” in: VI Int. Pulvermet. Tagung (Dresden, 1981), ZFW, Dresden (1981), pp. 279–293.

  21. J. Cheng, D. Agrawal, S. Komarneni, et al., “Microwave processing of WC–Co composites and ferroic titanates,” Mater. Res. Innovations, 1, No. 1, 44–52 (1997).

  22. J. Cheng, R. Roy, and D. Agrawal, “Radically different effects on materials by separated microwave electric and magnetic fields,” Mater. Res. Innovations, 5, Nos. 3–4, 170–177 (2002).

    Article  Google Scholar 

  23. E. Breval, “Comparison between microwave and conventional sintering of WC/Co composites,” Mater. Sci. Eng.: A, 391, 285–295 (2005).

Download references

Acknowledgements

The author is grateful to Kishnir for assistance in laying out the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Raichenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 7–8 (516), pp. 88–106, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raichenko, A.I. Effect of Electromagnetic Field in Hard Metal Technique. Powder Metall Met Ceram 56, 430–444 (2017). https://doi.org/10.1007/s11106-017-9913-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9913-5

Keywords

Navigation