Skip to main content
Log in

Structural, Mechanical, and Electrical Behavior of Ceramic-Reinforced Copper Metal Matrix Hybrid Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article presents the structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites developed by stir-casting technique. Commercial copper was used as matrix, and different weight percentages of boron carbide (B4C), with constant weight percentage of tungsten carbide, boron nitride, and chromium, were used as reinforcements. Copper hybrid composites were characterized by high-resolution x-ray diffraction, optical microscope, scanning electron microscope, energy-dispersive analysis of x-ray, high-resolution scanning electron microscope, and Fourier transform infrared spectroscopy. Density, hardness, tensile strength, compressive strength, and electrical conductivity were also analyzed. These hybrid composites show improved mechanical properties such as hardness, tensile strength, and compressive strength, while relatively lower density and electrical conductivity were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Rajkovic, D. Bozic, J. Stasic, H. Wang, and M.T. Jovanovic, Processing, Characterization and Properties of Copper-Based Composites Strengthened by Low Amount of Alumina Particles, Powder Technol., 2014, 268, p 392–400

    Article  Google Scholar 

  2. M.T. Jovanović and V. Rajković, High Electrical Conductivity Cu-Based Alloys, Part I, J. Metall. MJoM, 2009, 15, p 125–133

    Google Scholar 

  3. S.F. Moustafa, Z.A. Hamid, and A.M.A. Elhay, Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique, Mater. Lett., 2002, 53, p 244–249

    Article  Google Scholar 

  4. D.Y. Ying and D.L. Zhang, Processing of Cu-Al2O3 Metal Matrix Nanocomposites Materials by Using High Energy Ball Milling, Mater. Sci. Eng. A, 2000, 286, p 152–156

    Article  Google Scholar 

  5. S.J. Hwang and J.H. Lee, Mechanochemical Synthesis of Cu-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2005, 405, p 140–146

    Article  Google Scholar 

  6. D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540

    Article  Google Scholar 

  7. J.M. Torralba, C. Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p 203–206

    Article  Google Scholar 

  8. M.A. Dorri, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, Functional Metal Matrix Composites: Self-Lubricating, Self-Healing, and Nanocomposites-an Outlook, JOM, 2014, 66(6), p 872–881

    Article  Google Scholar 

  9. P.K. Rohatgi, K.M. Tabandeh, E. Omrani, M.R. Lovell, P.L. Menezes, Tribology of Metal Matrix Composites. Tribology for Scientists and Engineers. Springer, New York, 2013, p 233–268.

  10. H. Hu, Squeeze Casting of Magnesium Alloys and Their Composites, J. Mater. Sci., 1998, 33, p 1579–1589

    Article  Google Scholar 

  11. Z.Y. Hai and Y.L. Xing, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171

    Article  Google Scholar 

  12. A. Banerji, H. Hu, and A.T. Alpas, Sliding Wear Mechanisms of Magnesium Composites AM60 Reinforced with Al2O3 Fibres Under Ultra-Mild Wear Conditions, Wear, 2013, 301(1–2), p 626–635

    Article  Google Scholar 

  13. T. Rajmohan, K. Palanikumar, and M. Kathirvel, Optimization of Machining Parameters in Drilling Hybrid Aluminium Metal Matrix Composites, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1286–1297

    Article  Google Scholar 

  14. Y.Z. Zhan and G.D. Zhang, The Role of Graphite Particles in the High Temperature Wear of Copper Hybrid Composites Against Steel, Mater. Des., 2006, 27, p 79–84

    Article  Google Scholar 

  15. A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene: A Review, Compos. Part B, 2015, 77, p 402–420

    Article  Google Scholar 

  16. P.K. Rohatgi, N. Gupta, and S. Alaraj, Thermal Expansion of Aluminum Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique, J. Compos. Mater., 2006, 40, p 1163–1174

    Article  Google Scholar 

  17. K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai et al., Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite, Mater. Sci. Eng., A, 2008, 490, p 235–241

    Article  Google Scholar 

  18. S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, and W.M. Zhu, Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressure Less Infiltration Technique, Compos. Part A, 2007, 38(2), p 301–306

    Article  Google Scholar 

  19. B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi, Microstructure and Hardness of Al2O3 Nanoparticles Reinforced Al-Mg Composites Fabricated by Reactive Wetting and Stir Mixing, Mater. Sci. Eng., A, 2011, 530, p 87–97

    Article  Google Scholar 

  20. T. Wada, G.T. Eldis, D.L. Albright, Composite Materials Having a Matrix of Magnesium or Magnesium Alloy Reinforced With Dis- continuous Silicon Carbide Particles, U. S. Patent No. 4, 657, 065. 14 April, 1987

  21. J. Lo, R. Santos, Magnesium Matrix Composites for Elevated Temperature Applications, SAE World Congress, SAE, Detroit, MI, (2007) 2007-01-1028

  22. J. Schröder and K.U. Kainer, Using Hybrid Reinforcement Methodology to Enhance Overall Mechanical Performance of Pure Magnesium, Mater. Sci. Eng., A, 1991, 135, p 33–36

    Article  Google Scholar 

  23. R.K. Gautam, S. Ray, S.C. Sharma, S.C. Jain, and R. Tyagi, Dry Sliding Wear Behavior of Hot Forged and Annealed Cu–Cr–Graphite In-Situ Composites, Wear, 2011, 271, p 658–664

    Article  Google Scholar 

  24. X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276

    Article  Google Scholar 

  25. T. Rajmohan, K. Palanikumar, and S. Arumugam, Synthesis and Characterization of Sintered Hybrid Aluminium Matrix Composites Reinforced with Nanocopper Oxide Particles and Microsilicon Carbide Particles, Compos. Part B: Eng., 2014, 59, p 43–49

    Article  Google Scholar 

  26. A.K.M.A. Iqbal, S. Chen, Y. Arai, and W. Araki, Study on Stress Evolution in SiC Particles During Crack Propagation in Cast Hybrid Metal Matrix Composites Using Raman Spectroscopy, Eng. Fail. Anal., 2015, 52, p 109–115

    Article  Google Scholar 

  27. M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960

    Article  Google Scholar 

  28. I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, and J.P. Davim, Microstructure and Wear Characterization of Rice Husk Ash Reinforced Copper Matrix Composites Prepared Using Friction Stir Processing, J. Alloys Compd., 2017, 718, p 150–160

    Article  Google Scholar 

  29. C.P. Samal, J.S. Parihar, and D. Chaira, The Effect of Milling and Sintering Techniques on Mechanical Properties of Cu-Graphite Metal Matrix Composite Prepared by Powder Metallurgy, J. Alloy. Compd., 2013, 569, p 95–101

    Article  Google Scholar 

  30. M. Hasmuddin, P. Singh, P. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, and M.A. Wahab, Structural, Spectroscopic, Optical, Dielectric and Mechanical Study of Pure and l-Proline Doped Ammonium Di-Hydrogen Phosphate Single Crystals, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 123, p 376–384

    Article  Google Scholar 

  31. T. Ananthi, S.M. Delphine, M.M. Freeda, R.K. Priya, and A.W. Almusallam, Growth and Characterization of Doped ADP Crystal, Rec. Res. Sci. Technol., 2011, 3(1), p 32–40

    Google Scholar 

  32. D. Xu and D. Xue, Chemical Bond Analysis of the Crystal Growth of KDP and ADP, J. Cryst. Growth, 2006, 286, p 108–113

    Article  Google Scholar 

  33. G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1, p 22–31

    Article  Google Scholar 

  34. C. Rath, P. Mallick, D. Pandey, D. Sa, A. Banerjee, and N.C. Mishra, Anomalous X-ray Diffraction Peak Broadening and Lattice Strains in Zn1 − xCoxO Dilute Magnetic Semiconductors, J. Phys.: Condens. Matter, 2009, 21, p 075801

    Google Scholar 

  35. B.K. Agarwal, X-ray Spectroscopy, 2nd ed., Springer, Berlin, 1991

    Book  Google Scholar 

  36. J.I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Plenum Press, New York, 2003

    Book  Google Scholar 

  37. J.C. Russ, Fundamentals of Energy Dispersive X-ray Analysis, Butterworths, London, 1984

    Google Scholar 

  38. V.D. Scott and G. Love, Quantitative Electron Probe Microanalysis, 2nd ed., Ellis Horwood, Chichester, 1994

    Google Scholar 

  39. B.B. Straumal, S.A. Polyakov, E. Bischoff, W. Gust, and E.J. Mittemeijer, Faceting of Σ3 and Σ9 Grain Boundaries in Copper, Interface Sci., 2001, 9, p 287–292

    Article  Google Scholar 

  40. B.B. Straumal, S.A. Polyakov, and E.J. Mittemeijer, Temperature Influence on the Faceting of Σ3 and Σ9 Grain Boundaries in Cu, Acta Mater., 2006, 54, p 167–172

    Article  Google Scholar 

  41. T.R. Prabhu, V.K. Varma, and S. Vedantam, Effect of SiC Volume Fraction and Size on Dry Sliding Wear of Fe/SiC/Graphite Hybrid Composites for High Sliding Speed Applications, Wear, 2014, 309, p 1–10

    Article  Google Scholar 

  42. S. Wang, S. Zhu, J. Cheng, Z. Qiao, J. Yang, and W. Liu, Microstructural, Mechanical and Tribological Properties of Al Matrix Composites Reinforced with Cu Coated Ti3AlC2, J. Alloys Compd., 2017, 690, p 612–620

    Article  Google Scholar 

  43. L. Yuan, J. Han, J. Liu, and Z. Jiang, Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced with In-Situ AlB2 Particles, Tribol. Int., 2016, 98, p 41–47

    Article  Google Scholar 

  44. K. Ravi Kumar, K. Kiran, and V.S. Sreebalaji, Micro Structural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide, J. Alloys Compd., 2017, 723, p 795–801

    Article  Google Scholar 

  45. X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276

    Article  Google Scholar 

  46. C.S. Ramesh, R.N. Ahmed, M.A. Mujeebu, and M.Z. Abdullah, Fabrication and Study on Tribological Characteristics of Cast Copper–TiO2–Boric Acid Hybrid Composites, Mater. Des., 2009, 30, p 1632–1637

    Article  Google Scholar 

  47. P. Sharma, S. Sharma, and D. Khanduja, A Study on Microstructure of Aluminium Matrix Composites, J. Asian Ceram. Soc., 2015, 3(3), p 240–244

    Article  Google Scholar 

  48. P. Jha, R.K. Gautam, R. Tyagi, and D. Kumar, Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites, J. Mater. Eng. Perform., 2016, 25, p 4210–4218

    Article  Google Scholar 

  49. M.S. Bhagyashekar, Wear characteristic of HSS cutting tool during turning operation of cast aluminium alloy-SiC/graphite composite. M.Sc., Eng. Thesis. University of Mysore (1997)

  50. N. Chawla and Y.L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370

    Article  Google Scholar 

  51. Z. Zhang, R. Tremblay, and D. Dube, Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys, Mater. Sci. Eng., A, 2004, 385, p 286–291

    Article  Google Scholar 

  52. Q.B. Nguyen and M. Gupta, Enhancing Compressive Response of AZ31B Magnesium Alloy Using Alumina Nanoparticulates, Compos. Sci. Technol., 2008, 68, p 2185–2192

    Article  Google Scholar 

  53. S.F. Hassan and M. Gupta, Development of High Strength Magnesium Copper Based Hybrid Composites with Enhanced Tensile Properties, Mater. Sci. Technol., 2003, 19, p 253–259

    Article  Google Scholar 

  54. Q.B. Nguyen and M. Gupta, Microstructure and Mechanical Characteristics of AZ31B/Al2O3 Nanocomposite with Addition of Ca, Compos. Mater., 2009, 43, p 5–17

    Article  Google Scholar 

  55. Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista, Strengthening in a WE54 Magnesium Alloy Containing SiC Particles, Mater. Sci. Eng., A, 2007, 462, p 225–229

    Article  Google Scholar 

  56. M.J. Shen, X.J. Wang, T. Ying, M.F. Zhang, and K. Wu, Microstructure and Tensile Properties of AZ31B Alloy and AZ31B-SiCp Deformed Through a Multi-Step Process, J. Mater. Eng. Perform., 2016, 25, p 4608–4616

    Article  Google Scholar 

  57. V.A. Nadkarni and E.J. Synk, Metals Handbook, Powder Metallurgy ASM, Metals Park, 1984

    Google Scholar 

  58. J.N. Grant, A. Lee, M. Lou, Multiple Hardening of Mechanisms for High Strength, High Temperature, High Conductivity Copper Base Alloys, Proceedings of Conference on High Conductivity Copper and Aluminium Alloys, Warrendale, PA, USA, The Metallurgical Society of AIME, (1984) p 103–111.

  59. C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, and D.K. Agrawal, An Investigation on the Effect of Sintering Mode on Various Properties of Copper-Graphene Metal Matrix Composite, Adv. Powder Technol., 2017, 28, p 1760–1768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manvandra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Gautam, R.K. Structural, Mechanical, and Electrical Behavior of Ceramic-Reinforced Copper Metal Matrix Hybrid Composites. J. of Materi Eng and Perform 28, 886–899 (2019). https://doi.org/10.1007/s11665-019-3860-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3860-x

Keywords

Navigation