Skip to main content
Log in

Solid Oxide Fuel Cell Anode Materials

  • REFRACTORY AND CERAMIC MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The solid oxide fuel cell is a promising element that efficiently converts fuel chemical energy into electrical and thermal ones. The paper offers a brief overview of the ways for enhancing the properties of the anode by improving its composition and structure. The composition and structure of the anode are responsible for the electrochemical oxidation of fuel. The ability of the solid oxide fuel cell to perform reliably with different fuel types (H 2 , C n H m , CO) is one of the key requirements for its further commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. C. Singhal and K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Oxford, U.K. (2003), p. 406.

  2. F. Tietz, H.-P. Buchkremer, and D. Stover, “Components manufacturing for solid oxide fuel cells,” Solid State Ionics, 152–153, 373–381 (2002).

    Article  Google Scholar 

  3. R. J. Gorte and J. M. Vohs, “SOFC anodes for the direct electrochemical oxidation of hydrocarbons,” J. Catal., 216, 477–486 (2003).

    Article  Google Scholar 

  4. H. S. Spasil, Electrical Device Including Nickel-Containing Stabilized Zirconia Electrode, US Patent 3.558.360, October 30, 1964; modified November 2, 1967; publ. March 31 (1970).

  5. K. C. Wincewicz and J. S. Cooper, “Taxonomies of SOFC material and manufacturing alternatives,” J. Power Sources, 140, 280–296 (2005).

    Article  Google Scholar 

  6. T. Kawada and J. Mizusaki, “Current electrolytes and catalysts,” in: W. Vielstich et al. (eds.), Handbook of Fuel Cells—Fundamentals, Technology and Application, Vol. 4, Fuel Cell Technology and Applications, Wiley and Sons, Chichester, England (2003), p. 987.

  7. J. Molenda, K. Swierczek, and W. Zajac, “Functional materials for the IT-SOFC,” J. Power Sources, 173, 657–670 (2007).

    Article  Google Scholar 

  8. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier Science, Amsterdam (1995), p. 356.

    Google Scholar 

  9. S. T. Aruna, M. Muthuraman, and K. C. Patil, “Synthesis and properties of Ni–YSZ cermet anode material for solid oxide fuel cells,” Solid State Ionics, 111, 45–51 (1998).

    Article  Google Scholar 

  10. M. Mori, T. Yamamoto, H. Itoh, et al., “Thermal expansion of nickel–zirconia anodes in solid oxide fuel cell during fabrication and operation,” J. Electrochem. Soc., 145, 1374–1381 (1998).

    Article  Google Scholar 

  11. P. Duran, J. Tartaj, and F. Capel, “Processing and characterization of nickel oxide/zirconia composite prepared by polymeric complex solution synthesis,” J. Eur. Ceram. Soc., 23, 2125–2133 (2003).

    Article  Google Scholar 

  12. S. Kim, H. Moon, and S. Hyun, “Ni–YSZ cermet anode fabricated from NiO–YSZ composite powder for high-performance and durability of solid oxide fuel cells,” Solid State Ionics, 178, 1304–1309 (2007).

    Article  Google Scholar 

  13. T. Kim, G. Liu, M. Boaro, et al., “A study of carbon formation and prevention in hydrocarbon-fueled SOFC,” J. Power Sources, 155, 231–238 (2006).

    Article  Google Scholar 

  14. M. L. Toebes, J. H. Bitter, and A. J. Van Dillen, “Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers,” Catal. Today, 76, 33–42 (2002).

    Article  Google Scholar 

  15. K. Nikooyeh, R. Clemmer, V. Alzate-Restrepo, et al., “Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane,” Appl. Catal. A: Gen., 347, 106–111 (2008).

    Article  Google Scholar 

  16. H. Timmermann, W. Sawady, and D. Campbell, “Coke formation and degradation in SOFC operation with a model reformate from liquid hydrocarbons,” J. Electrochem. Soc., 155, No. 4, B356–B359 (2008).

    Article  Google Scholar 

  17. Y. B. Lin, Z. L. Zhan, J. Liu, et al., “Direct operation of solid oxide fuel cells with methane fuel,” Solid State Ionics, 176, 1827–1835 (2005).

    Article  Google Scholar 

  18. M. D. Gross, J. M. Vohs, and R. J. Gorte, “Recent progress in SOFC anodes for direct utilization of hydrocarbons,” J. Mater. Chem., 17, 3071–3077 (2007).

    Article  Google Scholar 

  19. H. Kan and H. Lee, “Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC,” Appl. Catal. B: Environ., 97, 108–114 (2010).

    Article  Google Scholar 

  20. L. Jia, X. Wanga, B. Hua, et al., “Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni–Cu SOFC anode surfaces,” Int. J. Hydrogen Energy, 37, 11941–11945 (2012).

    Article  Google Scholar 

  21. C. Lu, S. An, W. L. Worrell, et al., “Development of intermediate-temperature solid oxide fuel cells for direct utilization of hydrocarbon fuels,” Solid State Ionics, 175, 47–50 (2004).

    Article  Google Scholar 

  22. R. J. Gorte, S. Park, J. M. Vohs, et al., “Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell,” Adv. Mater., 12, 1465–1469 (2000).

    Article  Google Scholar 

  23. C. M. Grgicak, M. M. Pakulska, and J. S. O’Brien, “Synergistic effects of Ni1–x Co x –YSZ and Ni1–x Cu x –YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S,” J. Power Sources, 183, 26–33 (2008).

    Article  Google Scholar 

  24. E. W. Park, H. Moon, M. S. Park, et al., “Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating,” Int. J. Hydrogen Energy, 34, 5537–5545 (2009).

    Article  Google Scholar 

  25. Y. Matsuzaki and I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode. I. Dependence on temperature, time, and impurity concentration,” Solid State Ionics, 132, 261–269 (2000).

    Article  Google Scholar 

  26. S. Zha, Z. Cheng, and M. Liu, “Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells,” J. Electrochem. Soc., 154, No. 2, B201–B206 (2007).

    Article  Google Scholar 

  27. K. Sasaki, K. Susuki, A. Iyoshi, et al., in: S. Singhal and J. Mizusaki (eds.), Proc. Solid Oxide Fuel Cells IX, The Electrochemical Society, Inc., Quebec (2005), Vol. 2, pp. 1267–1274.

  28. T. K. Shashkova, M. R. Kantserova1, V. I. Chedryk, et al., “Methane oxidative conversion over the composites of Y- and Sc-stabilized zirconia based,” Pol. J. Chem., 82, 371–376 (2008).

    Google Scholar 

  29. H. He, R. J. Gorte, and J. M. Vohs, “Highly sulfur tolerant Cu–Ceria anodes for SOFCs,” Electrochem. Solid-State Lett., 8, No. 6, A279–A280 (2005).

    Article  Google Scholar 

  30. J. W. Fergus, “Oxide anode materials for solid oxide fuel cells,” Solid State Ionics, 177, 1529–1541 (2006).

    Article  Google Scholar 

  31. M. K. Rath, B. G. Ahn, and B. H. Choi, “Effects of manganese substitution at the B-site of lanthanum-rich strontium titanate anodes on fuel cell performance and catalytic activity,” Ceram. Int., 39, 6343–6353 (2013).

    Article  Google Scholar 

  32. G. Pudmicha, B. A. Boukampb, M. Gonzalez-Cuencab, et al., “Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells,” Solid State Ionics, 135, 433–438 (2000).

    Article  Google Scholar 

  33. Y. H. Huang, R. I. Dass, Z. L. Xing, et al., “Double perovskites as anode materials for solid-oxide fuel cells,” Science, 312, 254–257 (2006).

    Article  Google Scholar 

  34. D. W. Dees, T. D. Claar, T. E. Ealser, et al., “Conductivity of porous Ni/ZrO2–Y2O3 cermets,” J. Electrochem. Soc., 134, 2141–2146 (1987).

    Article  Google Scholar 

  35. O. Vasylyev, I. Brodnikovskyi, M. Brychevskyi, et al., “NiO–10Sc1CeSZ anode: structure and mechanical behavior,” in: N. P. Bansal (ed.), Proc. Ceramic Engineering and Science: Advances in Solid Oxide Fuel Cells III, Wiley (2007), Vol. 28, No. 4, pp. 361–337.

  36. F. Tietz, F. J. Dias, D. Simwonis, et al., “Evaluation of commercial nickel oxide powders for components in solid oxide fuel cells,” J. Eur. Ceram. Soc., 20, 1023–1034 (2000).

    Article  Google Scholar 

  37. X. H. Fang, G. Y. Zhu, and C. R. Xia, “Synthesis and properties of Ni–SDC cermets for IT-SOFC anode by co-precipitation,” Solid State Ionics, 168, No. 1–2, 31–36 (2004).

    Article  Google Scholar 

  38. A. Ringuedé, D. Bronine, and J. R. Frade, “Assessment of Ni/YSZ anodes prepared by combustion synthesis,” Solid State Ionics, 146, No. 3–4, 219–224 (2002).

    Article  Google Scholar 

  39. S. K. Pratihar, A. Dassharma, and H. S. Maiti, “Processing microstructure property correlation of porous Ni–YSZ cermets anode for SOFC application,” Mater. Res. Bull., 40, No. 11, 1936–1944 (2005).

    Article  Google Scholar 

  40. R. F. Martins, M. C. Brant, R. M. Paniago, et al., “Synthesis and characterization of NiO–YSZ for SOFCs,” Mater. Res. Bull., 44, No. 2, 451–456 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Brodnikovskii.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 3–4 (502), pp. 49–59, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodnikovskii, E.M. Solid Oxide Fuel Cell Anode Materials. Powder Metall Met Ceram 54, 166–174 (2015). https://doi.org/10.1007/s11106-015-9694-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9694-7

Keywords

Navigation