Skip to main content

Abstract

Solid oxide fuel cells (SOFCs) are promising power generation systems that electrochemically convert chemical energy into electrical energy with little or no emission of pollutants [1–3]. Moreover, a high-temperature fuel cell has many advantages such as a high efficiency and fuel flexibility in comparison with a low-temperature fuel cell. For these reasons, a considerable amount of attention has been paid to SOFCs in recent years for application to medium- to large-scale power generation and combined heat and power (CHP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J.J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance (CRC Press, London, 2009)

    Google Scholar 

  2. S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, design and applications (Elsevier Ltd, Amsterdam, 2003)

    Google Scholar 

  3. D.K. Lim, J.G. Guk, H.S. Choi, S.J. Song, Measurement of partial conductivity of 8YSZ by Hebb-Wagner polarization method. J. Kor. Ceram. Soc. 52, 299–303 (2015)

    Article  Google Scholar 

  4. I.Y. Jung, D.H. Lee, S.O. Lee, D.H. Kim, J.S. Kim, S.H. Hyun, J.H. Moon, LSCM-YSZ nanocomposites for a high performance SOFC anode. Ceram. Int. 39, 9753–9758 (2013)

    Article  Google Scholar 

  5. M. Toshiaki, M. Yuichi, M. Hiroki, E. Koichi, Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells. J. Power Sources 242, 790–796 (2013)

    Article  Google Scholar 

  6. T.H. Shin, M. Shin, G.W. Park, S. Lee, S.K. Woo, J. Yu, Fabrication and characterization of oxide ion conducting films, Zr1-xMxO2-δ (M=Y, Sc) on porous SOFC anodes, prepared by electron beam physical vapor deposition. Sustain. Energy Fuels 1, 103–111 (2017)

    Article  Google Scholar 

  7. H.Z. Wang, Z. Gao, S.A. Barnett, Anode-supported solid oxide fuel cells fabricated by single step reduced-temperature co-firing. J. Electrochem. Soc. 163, 196–201 (2016)

    Article  Google Scholar 

  8. B. Timurkutluk, C. Timurkutluk, M.D. Mat, Y. Kaplan, Development of high-performance anode supported solid oxide fuel cell. Int. J. Energy Res. 36, 1383–1387 (2012)

    Article  Google Scholar 

  9. S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review. Ceram. Int. 22, 257–265 (1996)

    Article  Google Scholar 

  10. K. Huang, S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology. A critical review. J. Power Sources 237, 84–97 (2013)

    Article  Google Scholar 

  11. D. Stolten, B. Emonts, P. Heidebrecht, S. Piewek, K. Sundmacher, Fuel Cell Science and Engineering: Materials, Processes, systems and technology (Wiley-VCH, Weinheim, 2012)

    Book  Google Scholar 

  12. Z. Lu, X.D. Zhou, D. Fisher, J. Templeton, J. Stevenson, N. Wu, A. Ignatiev, Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2 Ce0.8 O1.9 interlayer. Electrochem. Commun. 12, 179–182 (2010)

    Article  Google Scholar 

  13. EG & G Technical Services, Fuel Cell Handbook, 5th edn. (Parsons, Inc, Morgan, 2000)

    Google Scholar 

  14. D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics 166, 229–239 (2004)

    Article  Google Scholar 

  15. M.J. Santillán, A. Caneiro, N. Quaranta, A.R. Boccaccini, Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3-δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). J. Eur. Ceram. Soc. 29, 1125–1132 (2009)

    Article  Google Scholar 

  16. M. Matsuda, T. Hosomia, K. Murata, T. Fukui, M. Miyake, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. J. Power Sources 165, 102–107 (2007)

    Article  Google Scholar 

  17. I. Muneeb, S. Khurram, R. Rizwan, A. Anwar, T. Pankaj, Z. Bin, R. Asia, A. Amjad, K.U. Muhammad, U. Arslan, A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl. Sci. 6, 75 (2016)

    Article  Google Scholar 

  18. Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang, P. Cheang, Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. J. Power Sources 117, 26–34 (2003)

    Article  Google Scholar 

  19. W. Li, K. Hasinska, M. Seabaugh, S. Swartz, J. Lannutti, Curvature in solid oxide fuel cells. J. Power Sources 138, 145–155 (2004)

    Article  Google Scholar 

  20. M.F. Carolan, J.N. Michaels, Growth rates and mechanism of electrochemical vapor deposited yttria-stabilized zirconia films. Solid State Ionics 37, 189–196 (1990)

    Article  Google Scholar 

  21. H.Y. Jung, K.S. Hong, H. Kim, J.K. Park, J.W. Son, J. Kim, H.W. Lee, J.H. Lee, Characterization of thinfilm YSZ deposited via EB-PVD technique in anode-supported SOFCs. J. Electrochem. Soc. 153, 961–966 (2006)

    Article  Google Scholar 

  22. T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J. Am. Ceram. Soc. 79, 913–919 (1996)

    Article  Google Scholar 

  23. T. Setoguchi, M. Sawano, K. Eguchi, H. Arai, Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC. Solid State Ionics 40-41, 502–505 (1990)

    Article  Google Scholar 

  24. M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, Thick YSZ films prepared via a modified sol-gel route: thickness control (8~80 mm). J. Eur. Ceram. Soc. 26, 3153–3160 (2006)

    Article  Google Scholar 

  25. G. Schiller, R.H. Henne, M. Lang, R. Ruckdaeschel, S. Schaper, Development of vacuum plasma sprayed thinfilm SOFC for reduced operating temperature. Fuel Cells Bulletin 21, 7–12 (2000)

    Article  Google Scholar 

  26. N.A. Baharuddin, A. Muchtar, M.R. Somalu, Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrog. Energy 42, 9149–9155 (2017)

    Article  Google Scholar 

  27. A. Tarancón, M. Burriel, J. Santiso, S.J. Skinner, J.A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20, 3799–3813 (2010)

    Article  Google Scholar 

  28. F.S. Baumann, J. Fleig, H.U. Habermeier, J. Maier, Ba0.5Sr0.5Co0.8Fe0.2O3-δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177, 3187–3191 (2006)

    Article  Google Scholar 

  29. F.S. Baumann, J. Maier, J. Fleig, The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes. Solid State Ionics 179, 1198–1204 (2008)

    Article  Google Scholar 

  30. A. Bieberle-Hütter, M. Søgaard, H.L. Tuller, Electrical and electrochemical characterization of microstructured thin film La1-xSrxCoO3 electrodes. Solid State Ionics 177, 1969–1975 (2006)

    Article  Google Scholar 

  31. A. Bieberle-Hütter, H.L. Tuller, Fabrication and structural characterization of interdigitated thin film La1 – X SrxCoO3 (LSCO) electrodes. J. Electroceram. 16, 151–157 (2006)

    Article  Google Scholar 

  32. N. Grunbaum, L. Mogni, F. Prado, Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3-δ. J. Solid State Chem. 177, 2350–2357 (2004)

    Article  Google Scholar 

  33. J.A. Lane, S.J. Benson, D. Waller, J.A. Kilner, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics 121, 201–208 (1999)

    Article  Google Scholar 

  34. F. Prado, T. Armstrong, A. Caneiro, A. Manthiram, Structural stability and oxygen permeation properties of Sr3-xLaxFe2-yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J. Electrochem. Soc. 148, J7–J14 (2001)

    Article  Google Scholar 

  35. J.A. Kilner, C.K.M. Shaw, Mass transport in La2Ni1-xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics 154-155, 523–527 (2002)

    Article  Google Scholar 

  36. M. Burriel, S. Wilkins, J.P. Hill, M.A. Munoz-Marquez, H.H. Brongersma, J.A. Kilner, M.P. Ryana, S.J. Skinner, Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 7, 311–316 (2014)

    Article  Google Scholar 

  37. G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Donner, C.L. Chen, L. Reimus, P. Brodersen, C.A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 1–3 (2006)

    Google Scholar 

  38. J.H. Kim, A. Manthiram, LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155, B385–B390 (2008)

    Article  Google Scholar 

  39. J.H. Kim, F. Prado, A. Manthiram, Characterization of GdBa1-xSrxCo2O5+δ (0 ≤ x ≤ 1.0) double perovskites as cathodes for solid oxide fuel cells. J. Electrochem. Soc. 155, B1023–B1028 (2008)

    Article  Google Scholar 

  40. F. Mauvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, L. Huo, P. Stevens, Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr): AC impedance and DC polarization studies. J. Electrochem. Soc. 153, A1547–A1553 (2006)

    Article  Google Scholar 

  41. S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)

    Article  Google Scholar 

  42. S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics 135, 709–712 (2000)

    Article  Google Scholar 

  43. Q. Zhou, T. He, Y. Ji, SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 185, 754–758 (2008)

    Article  Google Scholar 

  44. A. Tarancón, S.J. Skinner, R.J. Chater, F.H. Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)

    Article  Google Scholar 

  45. T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs. Solid State Ionics 177, 1941–1948 (2006)

    Article  Google Scholar 

  46. M. Mogensen, S. Skaarup, Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86-88, 1151–1160 (1996)

    Article  Google Scholar 

  47. P. Holtappels, F.W. Poulsen, M. Mogensen, Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 135, 675–679 (2000)

    Article  Google Scholar 

  48. M. Mogensen, K.V. Jensen, M.J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes. Solid State Ionics 150, 123–129 (2002)

    Article  Google Scholar 

  49. M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63–94 (2000)

    Article  Google Scholar 

  50. S. Primdahl, B.F. Sørensen, M. Mogensen, Effect of nickel oxide/yttria-stabilized zirconia anode precursor sintering temperature on the properties of solid oxide fuel cells. J. Am. Ceram. Soc. 83, 489–494 (2000)

    Article  Google Scholar 

  51. S. Primdahl, M. Mogensen, Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion. Solid State Ionics 152-153, 597–608 (2002)

    Article  Google Scholar 

  52. P. Holtappels, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes I. DC polarization characteristics. J. Electrochem. Soc. 146, 1620–1625 (1999)

    Article  Google Scholar 

  53. P. Holtappels, I.C. Vinke, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes II. AC polarization characteristics. J. Electrochem. Soc. 146, 2976–2982 (1999)

    Article  Google Scholar 

  54. D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132, 241–251 (2000)

    Article  Google Scholar 

  55. S.J. Tao, T.S. Irvine, Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc. 151, A252–A259 (2004)

    Article  Google Scholar 

  56. A.V. Virkar, J. Chen, C.W. Tanner, J.W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)

    Article  Google Scholar 

  57. W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362, 228–239 (2003)

    Article  Google Scholar 

  58. O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123, 199–208 (1999)

    Article  Google Scholar 

  59. A. Atkinson, B. Sun, Residual stress and thermal cycling of planar solid oxide fuel cells. Mater. Sci. Technol. 23, 1135–1143 (2007)

    Article  Google Scholar 

  60. Q.X. Fu, F. Tietz, Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells 8, 283–293 (2008)

    Article  Google Scholar 

  61. L.J. Gauckler, D. Beckel, B.E. Buergler, J. Eva, U.P. Muecke, M. Prestat, J.L.M. Rupp, R. Jörg, Solid oxide fuel cells: systems and materials. CHIMIA Int. J. Chem. 58, 837–850 (2004)

    Article  Google Scholar 

  62. N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, Materials and manufacturing technologies for solid oxide fuel cells. J. Mater. Sci. 45, 3109–3135 (2010)

    Article  Google Scholar 

  63. B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors. Solid State Ionics 28-30, 1547–1552 (1988)

    Article  Google Scholar 

  64. S. Tao, J.T.S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 17, 1734–1737 (2005)

    Article  Google Scholar 

  65. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)

    Article  Google Scholar 

  66. S. Tao, J.T.S. Irvine, Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem. Rec. 4, 83–95 (2004)

    Article  Google Scholar 

  67. P. Huang, A. Horky, A. Petric, Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc. 82, 2402–2406 (1999)

    Article  Google Scholar 

  68. B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid-state electrochemical reactors. Solid State Ionics 28, 1547–1552 (1988)

    Article  Google Scholar 

  69. E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    Article  Google Scholar 

  70. G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gort, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)

    Article  Google Scholar 

  71. M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)

    Article  Google Scholar 

  72. R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)

    Article  Google Scholar 

  73. S. Park, R.J. Gorte, J.M. Vohs, Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl. Catal. A Gen. 200, 55–61 (2000)

    Article  Google Scholar 

  74. S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)

    Article  Google Scholar 

  75. X.L. Yue, J.T.S. Irvine, Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. J. Electrochem. Soc. 159, F442–F448 (2012)

    Article  Google Scholar 

  76. S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni–Fe–La(Sr)Fe(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte. Adv. Energy Mater. 5, 2 (2015)

    Google Scholar 

  77. Y. Li, J. Zhou, D. Dong, Y. Wang, J. Jiang, H. Xia, K. Xie, Composite fuel electrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 14, 15547–15553 (2012)

    Article  Google Scholar 

  78. S.W. Lee, G.T. Kim, J.M. Vohsa, R.J. Gortea, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)

    Article  Google Scholar 

  79. S. McIntosh, J.M. Vohs, R. Gorte, J. Electrochim, An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochim. Acta 47, 3815 (2002)

    Article  Google Scholar 

  80. S. McIntosh, J.M. Vohs, R.J. Gorte, Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Solid-State Lett. 6, A240 (2003)

    Article  Google Scholar 

  81. S. McIntosha, S.B. Adlerb, J.M. Vohs, R.J. Gortea, Effect of polarization on and implications for characterization of LSM-YSZ composite cathodes J. Electrochem. Solid-State Lett. 7, A111 (2004)

    Article  Google Scholar 

  82. S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)

    Article  Google Scholar 

  83. J. Beckers, R. Drost, I.V. Zandvoort, P.F. Collignon, G. Rothenberg, Selective hydrogen oxidation in the presence of C3 hydrocarbons using perovskite oxygen reservoirs. ChemPhysChem 9, 1062–1068 (2008)

    Article  Google Scholar 

  84. K. Kammer, E.M. Skou, LSFM perovskites as cathodes for the electrochemical reduction of NO. Solid State Ionics 176, 915–920 (2005)

    Article  Google Scholar 

  85. T.H. Shin, P. Vanalabhpatana, T. Ishihara, Oxide composite of Ce(Mn,Fe)O2 and La(Sr)Fe(Mn)O3 for anode of intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte. J. Electrochem. Soc. 157, B1896–B1901 (2010)

    Article  Google Scholar 

  86. T.H. Shin, S. Ida, T. Ishihara, Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 133, 19399–19407 (2011)

    Article  Google Scholar 

  87. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006)

    Article  Google Scholar 

  88. S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju, H.Y. Jeong, J.Y. Shin, J.T.S. Irvine, G.T. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)

    Article  Google Scholar 

  89. T.H. Shin, J.H. Myung, M. Verbraeken, G.T. Kim, J.T.S. Irvine, Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday Discuss. 182, 227–239 (2015)

    Article  Google Scholar 

  90. M. Burriel, H. Tellez, R.J. Chater, R. Castaing, P. Veber, M. Zaghrioui, T. Ishihara, J.A. Kilner, J.M. Bassat, Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 120, 17927–17938 (2016)

    Article  Google Scholar 

  91. K. Zheng, A. Gorzkowska-Sobaś, K. Świerczek, Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs. Mater. Res. Bull. 47, 4089–4095 (2012)

    Article  Google Scholar 

  92. Y.N. Kim, Y.N.A. Manthiram, La1.85Sr1.15Cu2−xCoxO6+δ intergrowth oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochim. Acta 70, 375–381 (2012)

    Article  Google Scholar 

  93. E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)

    Article  Google Scholar 

  94. X. Huang, T.H. Shin, J. Zhoua, J.T.S. Irvine, Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3Ni x Cu1−x O4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs. J. Mater. Chem. A 3, 13468–13475 (2015)

    Article  Google Scholar 

  95. F. Tonus, M. Bahout, V. Dorcet, G.H. Gauthier, S. Paofai, R.I. Smithd, S.J. Skinner, Redox behavior of the SOFC electrode candidate NdBaMn2O5+ d investigated by high-temperature in situ neutron diffraction: first characterisation in real time of an LnBaMn2O5.5 intermediate phase. J. Mater. Chem. A 4, 11635–11647 (2016)

    Article  Google Scholar 

  96. I. Hamada, A. Uozumi, Y. Morikawa, A. Yanase, H.K. Yoshida, A density functiona2l theory study of self-regenerating catalysts LaFe1–xMxO3–y (M = Pd, Rh, Pt). J. Am. Chem. Soc. 133, 18506–18509 (2011)

    Article  Google Scholar 

  97. D.M. Bierschenk, E. Potter-Nelson, C. Hoelb, Y. Liao, L. Marks, K.R. Poeppelmeier, S.A. Barnett, Pd-substituted (La,Sr)CrO3-δ-Ce0.9Gd0.1O2-δ solid oxide fuel cell anodes exhibiting regenerative behavior. J. Power Sources 196, 3089–3094 (2011)

    Article  Google Scholar 

  98. T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chem. Eur. J. 18, 11695 (2012)

    Article  Google Scholar 

  99. D. Neagu, T.S. Oh, D.N. Miller, H. Ménard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J.M. Vohs, J.T.S. Irvine, Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015)

    Article  Google Scholar 

  100. D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013)

    Article  Google Scholar 

  101. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002)

    Article  Google Scholar 

  102. H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, J.H. Mizuki, The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal. Today 117, 321–328 (2006)

    Article  Google Scholar 

  103. T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chemistry 18, 11695–11702 (2012)

    Article  Google Scholar 

  104. J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016)

    Article  Google Scholar 

  105. J.J. Choi, S.H. Oha, H.S. Nohb, H.R. Kimb, J.W. Sonb, D.S. Parka, J.H. Choi, J.H. Ryua, B.D. Hahna, W.H. Yoon, H.W. Lee, Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J. Alloys Compd. 509, 2627–2630 (2011)

    Article  Google Scholar 

  106. J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Low-temperature fabrication of nano-structured porous (La,Sr)(Co,Fe)O3−δ cathodes by aerosol deposition. J. Alloys Compd. 545, 186–189 (2012)

    Article  Google Scholar 

  107. H. Tu, U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells. J. Power Sources 127, 284 (2004)

    Article  Google Scholar 

  108. Z. Yang, G. Xia, Z. Templeton, J. Nie, J.W. Stevenson, Ce-Modified ( Mn , Co )3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Electrochem. Solid-State Lett. 11, B140 (2008)

    Article  Google Scholar 

  109. J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn, W.H. Yoon, H.T. Lim, Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process. J. Am. Ceram. Soc. 90, 1926–1929 (2007)

    Article  Google Scholar 

  110. J.J. Choi, D.S. Park, B.D. Hahn, J.H. Ryu, W.H. Yoon, Oxidation behavior of ferritic steel alloy coated with highly dense conducting ceramics by aerosol deposition. J. Am. Ceram. Soc. 91, 2601–2606 (2008)

    Article  Google Scholar 

  111. J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. J. Mater. Sci. 44, 843–848 (2009)

    Article  Google Scholar 

  112. J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, J.H. Choi, D.S. Park, Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition. J. Am. Ceram. Soc. 93, 1614–1618 (2010)

    Google Scholar 

  113. J. Akedo, M. Lebedev, U.S. Patent. Pub. No. US2005/0181208 A1 (2005)

    Google Scholar 

  114. D.S. Park, B.D. Hahn, J.J. Choi, W.H. Yoon, J. Ryu, Ceramics coating process technology by aerosol deposition. Machin. Mater. 18, 6–20 (2006)

    Google Scholar 

  115. J. Choi, B. Han, D. Park, Machin. Mater. 18, 21–38 (2006)

    Google Scholar 

  116. J.J. Choi, B.D. Hahn, J.H. Ryu, W.H. Yoon, D.S. Park, Effects of Pb(Zn1∕3Nb2∕3)O3Pb(Zn1∕3Nb2∕3)O3 addition and postannealing temperature on the electrical properties of Pb(ZrxTi1−x)O3Pb(ZrxTi1−x)O3 thick films prepared by aerosol deposition method. J. Appl. Phys. 102, 044101 (2007)

    Article  Google Scholar 

  117. J.J. Choi, J.H. Jang, B.D. Hahn, D.S. Park, W.H. Yoon, J.H. Ryu, C. Park, Preparation of highly dense PZN–PZT thick films by the aerosol deposition method using excess-PbO powder. J. Am. Ceram. Soc. 90, 3389–3394 (2007)

    Article  Google Scholar 

  118. J.H. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, K.H. Kim, Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3(K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007)

    Article  Google Scholar 

  119. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5, 3205–3214 (2009)

    Article  Google Scholar 

  120. B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J. Am. Ceram. Soc. 92, 683–687 (2009)

    Article  Google Scholar 

  121. B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature. Appl. Catal. B Environ. 83, 1–7 (2008)

    Article  Google Scholar 

  122. J.H. Ryu, K.Y. Kim, B.D. Hahn, J.J. Choi, W.H. Yoon, B.K. Lee, D.S. Park, C. Park, Photocatalytic nanocomposite thin films of TiO2-β-calcium phosphate by aerosol-deposition. Catal. Commun. 10, 596–599 (2009)

    Article  Google Scholar 

  123. J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, J.D. Yun, D.S. Park, Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition. J. Eur. Ceram. Soc. 32, 115–121 (2012)

    Article  Google Scholar 

  124. J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO-YSZ. J. Eur. Ceram. Soc. 32, 3249–3254 (2012)

    Article  Google Scholar 

  125. J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, D.S. Park, J.D. Yun, Electrochemical effects of cobalt doping on (La,Sr)(Ga,Mg)O3−δ electrolyte prepared by aerosol deposition. Int. J. Hydrog. Energy 37, 6830–6835 (2012)

    Article  Google Scholar 

  126. J.J. Choi, K.S. Cho, J.H. Choi, J. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, J. Yun, D.S. Park, Effects of annealing temperature on solid oxide fuel cells containing (La,Sr)(Ga,Mg,Co)O3-δ electrolyte prepared by aerosol deposition. Mater. Lett. 70, 44–47 (2012)

    Article  Google Scholar 

  127. S.F. Wang, Y.F. Hsu, C.H. Wang, C.T. Yeh, Solid oxide fuel cells with Sm0.2Ce0.8O2−δ electrolyte film deposited by novel aerosol deposition method. J. Power Sources 196, 5064–5069 (2011)

    Article  Google Scholar 

  128. J.J. Choi, D.S. Park, B.G. Seong, H.Y. Bae, Low-temperature preparation of dense (Gd,Ce)O2−δ–Gd2O3 composite buffer layer by aerosol deposition for YSZ electrolyte-based SOFC. Int. J. Hydrog. Energy 37, 9809–9815 (2012)

    Article  Google Scholar 

  129. H. Bae, J. Choi, G.M. Choi, Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method. Solid State Ionics 236, 16–21 (2013)

    Article  Google Scholar 

  130. C.J. Li, C.X. Li, Y.Z. Xing, M. Gao, G.J. Yang, Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics 177, 2065–2069 (2006)

    Article  Google Scholar 

  131. Y. Jiang, H. Song, J. Gao, G. Meng, Formation and rate processes of Y2O3 stabilized ZrO2 thin films from Zr(DPM)4 and Y(DPM)3 by cold-wall aerosol-assisted MOCVD. J. Electrochem. Soc. 152, C498–C503 (2005)

    Article  Google Scholar 

  132. M. Liu, J. Gao, D. Dong, X. Liu, G. Meng, Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. Int. J. Hydrog. Energy 35, 10489–10494 (2010)

    Article  Google Scholar 

  133. M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J. Power Sources 202, 47–55 (2012)

    Article  Google Scholar 

  134. M. Haydn, K. Ortner, T. Franco, S. Uhlenbruck, N.H. Menzler, D. Stöver, G. Bräuer, A. Venskutonis, L.S. Sigl, H.P. Buchkremer, R. Vaßen, Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells. J. Power Sources 256, 52–60 (2014)

    Article  Google Scholar 

  135. A.C. Johnson, A. Baclig, D.V. Harburg, B.K. Lai, S. Ramanathan, Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195, 1149–1155 (2010)

    Article  Google Scholar 

  136. K. Kerman, B.K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656–661 (2012)

    Article  Google Scholar 

  137. J. Yanz, H. Matsumoto, M. Enoki, T. Ishihara, High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ composite film. Electrochem. Solid-State Lett. 8, A389–A391 (2005)

    Article  Google Scholar 

  138. D. Berndt, U. Teutsch, Float charging of valve-regulated lead-acid batteries: a balancing act between secondary reactions. J. Electrochem. Soc. 143, 790–798 (1996)

    Article  Google Scholar 

  139. H.-T. Lim, A.V. Virkar, A study of solid oxide fuel cell stack failure by inducing abnormal behavior in a single cell test. J. Power Sources 185, 790–800 (2008)

    Article  Google Scholar 

  140. H.-T. Lim, A.V. Virkar, Electrochemical degradation of fuel cell: effect of electrolyte composition. ECS Trans. 25, 447–456 (2009)

    Article  Google Scholar 

  141. M.Y. Park, Y.G. Jung, H.-T. Lim, Delamination-resistant bi-layer electrolyte for anode-supported solid oxide fuel cells. Solid State Ionics 262, 438–443 (2014)

    Article  Google Scholar 

  142. M.Y. Park, H. Bae, H.-T. Lim, Bi-layer electrolyte for preventing solid oxide fuel cell stack degradation. J. Kor. Ceram. Soc. 51, 289–294 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Tae Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shin, T.H., Choi, JJ., Lim, HT. (2018). Solid Oxide Fuel Cell Materials. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics