Skip to main content
Log in

Structural Engineering of Powder Materials

  • SINTERED METALS AND ALLOYS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Three main areas in the engineering of structural powder materials related to the control of pore-space morphology, formation of perfect contacts, and optimization of solid-phase structure are discussed. The causes behind the effect of pores on the strength of both brittle materials and materials with high fracture toughness are analyzed. The formation of high-quality contact is analyzed in the context of structurization and evolution of interparticle boundaries at different production stages. The structural optimization of powder materials is discussed considering, as an example, the grain refinement and formation of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yu. N. Podrezov, L. I. Chernyshev, N. I. Lugovoi, and D. G. Verbilo, “Structural sensitivity of the ultimate mechanical properties of biporous materials prepared using a pore-former,” Powder Metal. Met. Ceram., 38, No. 7–8, 403–407 (1999).

    Article  CAS  Google Scholar 

  2. Y. N. Podrezov, N. I. Lugovoi, V. N. Slyunyaev, D. G. Verbilo, and L. I. Chernyshev, “Principles of the design of highly porous layered composites working in the bending mode,” Powder Metal. Met. Ceram., 39, No. 3–4, 171–177 (2000).

    Article  CAS  Google Scholar 

  3. S. A. Firstov and Yu. N. Podrezov, “Effect of the pore space structure on deformation energy absorption during compression of high-porosity composites. Part I. Low hardening stage,” Powder Metal. Met. Ceram., 39, No. 7–8, 407–413 (2000).

    Article  CAS  Google Scholar 

  4. Yu. N. Podrezov, M. P. Brodnykovsky, L. I. Chernyshev, and M. Szafran, “Non-elastic behavior of high-porous ceramic,” Polish Ceram. Bull., 69, 71–82 (2002).

    Google Scholar 

  5. Yu. N. Podrezov, D. G. Verbilo, E. M. Borisovskaya, and M. Szafran, “Mechanical behavior and damping parameters of high-porous ceramic materials,” Ceramics, 89, 162–175 (2005).

    CAS  Google Scholar 

  6. A. S. Drachinskii, A. E. Kushchevskii, A. V. Perepelkin, Yu. N. Podrezov, V. A. Reitor, V. I. Trefilov, I. M. Fedorchenko, and S. A. Firstov, “Effect of porosity on the resistance of P/M iron to cracking,” Powder Metal. Met. Ceram., 21 No. 12, 973–977 (1982).

    Google Scholar 

  7. S. A. Firstov, Yu. N. Podrezov, L. G. Shtyka, et al., “Modeling of the ductile–brittle transition in porous metallic materials under conditions of crack resistance tests,” Powder Metal. Met. Ceram., 29, No. 5, 411–416 (1990).

    Article  Google Scholar 

  8. Yu. N. Podrezov and L. G. Shtyka, “Structural sensitivity of the mechanical properties of powder materials,” in: Physics and Mechanics of Powder Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1993), pp. 15–32.

    Google Scholar 

  9. J. Gurland and N. M. Parikh, “Microstructural aspects of the fracture of two-phase alloys,” in: H. Liebowitz (ed.), Fracture. An Advanced Treatise, Vol. 7, Academic Press, New York (1969), pp. 842–879.

    Google Scholar 

  10. G. T. Hahn and A. R. Rosenfield, “The influence of a fine dispersion on the cleavage strength of iron,” Trans. AIME, 239, 668–674 (1967).

    CAS  Google Scholar 

  11. S. A. Firstov (ed.), A. N. Demidik, I. I. Ivanov, et al.; Structure and Strength of Powder Materials [in Russian], Naukova Dumka, Kyiv (1993).

  12. Yu. M. Podrezov, V. A. Nazarenko, Ya. I. Evich, and A. V. Vdovichenko, “Mechanical properties of powder titanium at different production stages. III. Contact formation in powder titanium based on examination of mechanical properties in sintering,” Powder Metal. Met. Ceram., 48, No. 3–4, 201–110 (2009).

    Article  CAS  Google Scholar 

  13. Yu. N. Podrezov, V. A. Nazarenko, A. V. Laptev, et al., “Mechanical properties of powder titanium at different production stages. IV. Mechanical properties and contact formation in powder titanium produced by dynamic hot pressing,” Powder Metal. Met. Ceram., 48, No. 5–6, 295–301 (2009).

    Article  CAS  Google Scholar 

  14. N. I. Danilenko, B. V. Borts, Yu. N. Podrezov, et al., “Analytical electron microscopy of nano-interlayers in the contact region of metals hot-rolled in vacuum,” Naukovi Notatki, 31, 109–114 (2011).

    Google Scholar 

  15. A. V. Laptev, L. A. Kryachko, A. I. Tolochin, et al., “Comparison of the structure and mechanical properties of ordinary and ultrafine Ag30Ni composites produced by impact sintering,” Metallofiz. Noveish. Technol., 34, No. 10, 1351–1360 (2012).

    Google Scholar 

  16. V. V. Skorokhod, A. V. Ragulya, and R. A. Andrievskii, “Rate-control sintering of nanocrystalline TiN powders,” Nano-Struct. Mater., No. 10 (1997).

  17. V. V. Skorokhod, I. V. Uvarova, and A. V. Ragulya, Physicochemical Kinetics in Nanostructured Systems [in Ukrainian], Akademperiodika, Kyiv (2001).

    Google Scholar 

  18. L. A. Poznyak, K. A. Gogaev, V. A. Shtakun, et al., “Determining the resistance to deformation in hot processing of high-speed powder steels,” in: High-Speed Powder Steels [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (1990), pp. 88–96.

    Google Scholar 

  19. O. I. Getman, V. V. Panichkina, V. V. Skorohod et al., “Diffusion processes in Ba–Sr–titanate system under microwave heating,” Key Eng. Mat., 206–213, 389–392 (2002).

    Article  Google Scholar 

  20. K. A. Gogaev and V. I. Ul’shin, Powder Metallurgy of Tool Steels [in Russian], Noulidzh, Donetsk (2012).

    Google Scholar 

  21. Yu. N. Podrezov V. A. Nazarenko, A. V. Laptev, et al., “Structural dispersion of powder titanium in the optimal conditions of dynamic hot pressing,” Powder Metal. Met. Ceram., 51, No. 1–2, 56–63 (2012).

    Article  CAS  Google Scholar 

  22. J. E. Beygelzimer, “Simple shear of metals: What is it?” Fiz. Tekhn. Vysok. Davl., 20, No. 4, 40–52 (2010).

    Google Scholar 

  23. I. I. Ivanova, A. N. Demidik, and A. A. Sotnik, “Activation of alloy formation in powder two-component systems by hot deformation,” Powder Metal. Met. Ceram., 40, No. 3–4, 144–148 (2001).

    Article  CAS  Google Scholar 

  24. I. I. Ivanova and A. N. Demidik, “Development of technology to obtain pore-free powder metallurgy alloys of the nickel–molybdenum system,” Powder Metal. Met. Ceram., 40, No. 5–6, 242–245 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Podrezov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 11–12 (488), pp. 75–87, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podrezov, Y.N. Structural Engineering of Powder Materials. Powder Metall Met Ceram 51, 677–686 (2013). https://doi.org/10.1007/s11106-013-9483-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9483-0

Keywords

Navigation