Skip to main content
Log in

Interdiffusion and Structural Changes in the Cr2O2–Al2O3(ZrO2) Diffusion Couple under Microwave Heating

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The interdiffusion and microstructural evolution of the Cr2O3–Al2O3 (5 vol.% ZrO2) diffusion couple are studied in the temperature range 1600–1800°C under microwave heating (24 Hz) and, for comparison, under traditional heating using electron microprobe analysis and microscopic analysis. It is found that the concentration of chromium is distributed differently in Al2O3 in diffusion zones under microwave and traditional heating. This is due to greater contribution of grain-boundary diffusion to the effective diffusion flux under microwave heating. Bulk diffusion and average grain-boundary diffusion coefficients are calculated. The grain size in the diffusion zone toward Al2O3 is smaller after microwave heating. Traditional heating induces grain growth by recrystallization, whereas two processes, recrystallization and polygonization, are superimposed during microwave heating. The polygonization is due to the generation of dislocations under thermal stresses originating from nonuniform temperature distribution in the diffusion zone with variable concentrations of the components. The calculated bulk and grain-boundary diffusion coefficients can be used to predict the kinetics of various diffusion mass-transfer processes in Al2O3 and Cr2O3 oxides and their mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. H. Sutton, “Microwave processing of ceramic materials,” Ceram. Bull., 68, No. 2, 376–386 (1988).

    Google Scholar 

  2. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials (topical review),” J. Phys. D: Appl. Phys., 34, R55–R75 (2001).

    Article  CAS  Google Scholar 

  3. Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, et al., “Effects of microwave heating in nanostructured ceramic materials,” Powder Metall. Met. Ceram., 49, No. 1–2, 31–41 (2010).

    Article  CAS  Google Scholar 

  4. M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, “Enhanced diffusion in sapphire during microwave heating,” J. Mater. Sci., 32, 1347 (1997).

    Article  CAS  Google Scholar 

  5. K. I. Rybakov and V. E. Semenov, “Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field,” Phys. Rev. B, 49, 64–68 (1994).

    Article  CAS  Google Scholar 

  6. K. I. Rybakov and V. E. Semenov, “Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field,” Phys. Rev. B, 52, 3030–3033 (1995).

    Article  CAS  Google Scholar 

  7. O. I. Getman, V. V. Panichkina, V. V. Holoptsev, et al., “Diffusion processes in Ba–Sr–Titanate system under microwave heating,” Key Eng. Mater., 206–213, 389–392 (2006).

    Google Scholar 

  8. O. I. Get’man, V. V. Panichkina, P. Ya. Radchenko, et al., “Diffusion processes and structurization in microwave sintering of BaTiO3–SrTiO3 and Al2O3–Cr2O3 powder systems with complete miscibility,” Powder Metall. Met. Ceram., 48, No. 5–6, 279–289 (2009).

    Article  Google Scholar 

  9. Yu. Bykov, A. Eremeev, M. Glyavin, et al., “24-84-GHz gyrotron systems for technological microwave applications,” IEEE Trans. Plasma Sci., 32, 67–72 (2004).

    Article  Google Scholar 

  10. SIAMS600, SIAMS Ltd, Ekaterinburg, http://siams.com.

  11. L. J. Harrison, “Influence of dislocation on diffusion kinetics in solids with particular reference to alkali halides,” Transact. Faraday Soc., A57, No. 8, 1191–1199 (1961).

    Article  Google Scholar 

  12. L. N. Paritskaya, Y. Kaganowskii, and V. V. Bogdanov, “Size dependent diffusion penetrability of nanomaterials,” Solid State Phenom., 94–102, 25–34 (2003).

    Article  Google Scholar 

  13. P. G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963).

    Google Scholar 

  14. J. C. Fisher, “Calculation of diffusion penetration curves for surface and grain boundary diffusion,” J. Appl. Phys., 22, Issue 1, 74–77 (1951).

    Article  CAS  Google Scholar 

  15. L. N. Paritskaya, V. I. Novikov, and V. S. Kruzhanov, “Diffusional homogenization of objects from ultrafine copper and nickel powders,” Powder Metall. Met. Ceram., 21, No. 7, 554–557 (1982).

    Article  Google Scholar 

  16. R. W. Balluffi, “Polygonization during diffusion,” J. Appl. Phys., 23, No. 10, 1407–1411 (1952).

    Article  CAS  Google Scholar 

  17. K. Bedu-Amissah, J. M. Rickman, H. M. Chan, and M. P. Harmer, “Grain boundary diffusion of Cr in pure and Y-doped alumina,” J. Am. Ceram. Soc., 90, No. 5, 1551–1555 (2007).

    Article  CAS  Google Scholar 

  18. E. G. Moya, F. Moya, A. Sami, et al., “Diffusion of chromium in alumina single-crystals,” Philos. Mag. A, 72, No. 4, 861–70 (1995).

    Article  CAS  Google Scholar 

  19. V. S. Stubican and J. W. Osenbach, “Grain-boundary and lattice diffusion of 51Cr in alumina and spinel,” W. D. Kingery (ed.) Advances in Ceramics. Structure and Properties of MgO and Al 2 O 3 Ceramics, Vol. 10, The American Ceramic Society, Columbus, Ohio (1984), pp. 406–417.

    Google Scholar 

  20. B. Lesage, A. M. Huntz, and G. Petot-Ervas, “Transport phenomena in undoped and chromium or yttrium doped-alumina,” Radiat. Eff., 75, Issue 1–4, 283–299 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Get’man.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 11–12 (488), pp. 61–74, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Get’man, O.I., Panichkina, V.V., Paritskaya, L.N. et al. Interdiffusion and Structural Changes in the Cr2O2–Al2O3(ZrO2) Diffusion Couple under Microwave Heating. Powder Metall Met Ceram 51, 666–676 (2013). https://doi.org/10.1007/s11106-013-9482-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9482-1

Keywords

Navigation