Skip to main content
Log in

Effects of microwave heating in nanostructured ceramic materials

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

This paper studies the influence of microwave heating on mass transport phenomena and phase transformations in nanostructured ceramic materials. Faster mass transport that depends significantly on the microwave field intensity is observed during microwave annealing of nanoporous alumina membranes. The effect of the microwave field on phase transformations and pore structure evolution in alumina powder compacts is characterized quantitatively. Preferred orientation of pores in ceramics sintered under linearly polarized microwave radiation is predicted theoretically and demonstrated experimentally. Decrease in the activation energy of plastic deformation is experimentally observed for alumina-based ceramics under microwave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials,” J. Phys. D: Appl. Phys., 34, R55–R75 (2001).

    Article  ADS  CAS  Google Scholar 

  2. B. A. Wilson, K.-Y. Lee, and E. D. Case, “Diffusive crack-healing behavior in polycrystalline alumina: a comparison between microwave annealing and conventional annealing,” Mater. Res. Bull., 32, 1607–1616 (1997).

    Article  CAS  Google Scholar 

  3. J. Wang, J. Binner, B. Vaidhyanathan, et al., “Evidence for the microwave effect during hybrid sintering,” J. Am. Ceram. Soc., 89, 1977–1984 (2006).

    Article  CAS  Google Scholar 

  4. A. Birnboim, D. Gershon, J. Calame, et al., “Comparative study of microwave sintering of zinc oxide at 2.45, 30 and 83 GHz,” J. Am. Ceram. Soc., 81, 1493–1501 (1998).

    CAS  Google Scholar 

  5. A. G. Whittaker, “Diffusion in microwave-heated ceramics,” Chem. Mater., 17, 3426–3432 (2005).

    Article  CAS  Google Scholar 

  6. S. V. Egorov, A. G. Eremeev, K. I. Rybakov, et al., “Microwave intensity-dependent mass transport enhancement in nanostructured alumina membranes,” in: D. C. Folz, J. H. Booske, D. E. Clark, et al. (eds.), Proc. 3rd World Cong. Microwave and Radio Frequency Applications, The American Ceramic Society, Westerville (2004), p. 167.

    Google Scholar 

  7. Yu. Bykov, A. Eremeev, M. Glyavin, et al., “24–84-GHz gyrotron systems for technological microwave applications,” IEEE Trans. on Plasma Science, 32, 67–72 (2004).

    Article  ADS  Google Scholar 

  8. Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, et al., “Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes,” J. Mater. Sci., 36, 131–136 (2001).

    Article  CAS  Google Scholar 

  9. K. I. Rybakov, A. G. Eremeev, S. V. Egorov, et al., “Effect of microwave heating on phase transformations in nanostructured alumina,” J. Phys. D: Appl. Phys., 41, 102008 (2008).

    Article  ADS  CAS  Google Scholar 

  10. K. I. Rybakov, A. G. Eremeev, S. V. Egorov, et al., “Phase transformations and pore structure evolution in nanostructured alumina under variable-power microwave heating,” in: Proc. Global Congress on Microwave Energy Applications, Japan Society of Electromagnetic Wave Energy Applications, Tokyo (2008), p. 241.

  11. Yu. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” J. Nanoparticle Research, 5, 539–550 (2003).

    Article  ADS  Google Scholar 

  12. V. Ivanov, S. Paranin, and A. Nozdrin, “Principles of pulsed compaction of ceramic nano-sized powders,” Key Eng. Mater., 132–136, 400–403 (1997).

    Google Scholar 

  13. R. A. Young (ed.), The Rietveld Method, Oxford University Press, Oxford (1993).

    Google Scholar 

  14. M. Willert-Porada, “A microstructural approach to the origin of “microwave effects” in sintering of ceramics and composites,” in: D. E. Clark et al. (eds.), Microwaves: Theory and Application in Materials Processing IV (Ceramic Transactions, Vol. 80), The American Ceramic Society, Westerville (1997), pp. 153–164.

    Google Scholar 

  15. K. I. Rybakov and V. E. Semenov, “Mass transport in ionic crystals induced by the ponderomotive action of high-frequency electric field,” Phys. Rev. B., 52, 3030–3033 (1995).

    Article  ADS  CAS  Google Scholar 

  16. I. M. Lifshitz, A. M. Kossevich, and Ya. E. Geguzin, “Surface phenomena and diffusion mechanism of the movement of defects in ionic crystals,” J. Phys. Chem. Solids, 28, 783–798 (1967).

    Article  ADS  Google Scholar 

  17. K. I. Rybakov, V. E. Semenov, G. Link, et al., “Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field,” J. Appl. Phys., 101, 084915 (2007).

    Article  ADS  CAS  Google Scholar 

  18. G. Link, M. Wolff, S. Takayama, et al., “Evidence for non-thermal effects during microwave sintering of zirconia ceramics,” in: A. G. Litvak (ed.), Proc. 6th Int. Workshop Strong Microwaves in Plasmas, Institute of Applied Physics, Nizhny Novgorod (2006), Vol. 2, pp. 722–726.

  19. J. Tabellion and R. Clasen, “Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses––applications,” J. Mater. Sci., 39, 803–811 (2004).

    Article  ADS  CAS  Google Scholar 

  20. S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, et al., “Plastic deformation of ultrafine oxide ceramics under microwave heating,” Ross. Nanotekhnol., 3, No. 5–6, 9–12 (2008).

    Google Scholar 

  21. Yu. V. Bykov, A. G. Eremeev, S. V. Egorov, et al., Device for Sintering of a Ceramic Product Using Microwave Heating and External Pressure [in Russian], Russian Federation Patent No. 2352540 (2009).

  22. W. R. Cannon and T. G. Langdon, “Creep of ceramics. Part 2: An examination of flow mechanisms,” J. Mater. Sci., 23, 1–20 (1988).

    Article  ADS  CAS  Google Scholar 

  23. G. Bernard-Granger, C. Guizard, and R. Duclos, “Compressive creep behavior in air of a slightly porous assintered polycrystalline α-alumina material,” J. Mater. Sci., 42, 2807–2819 (2007).

    Article  ADS  CAS  Google Scholar 

  24. O. Ruano, J. Wadsworth, and O. Sherby, “Deformation of fine-grained alumina by grain boundary sliding accommodated by slip,” Acta Mat., 51, 3617–3634 (2003).

    Article  CAS  Google Scholar 

  25. A. Lakki, R. Schaller, C. Carry, et al., “High-temperature anelastic and viscoplastic deformation of finegrained magnesia- and magnesia/yttria-doped alumina,” J. Am. Ceram. Soc., 82, 2181–2187 (1999).

    CAS  Google Scholar 

  26. F. Wakai, T. Nagano, and T. Iga, “Hardening in creep of alumina by Zr segregation at grain boundary,” J. Am. Ceram. Soc., 80, 2361–2366 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Rybakov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 1–2 (471), pp. 42–56, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, Y.V., Egorov, S.V., Eremeev, A.G. et al. Effects of microwave heating in nanostructured ceramic materials. Powder Metall Met Ceram 49, 31–41 (2010). https://doi.org/10.1007/s11106-010-9198-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9198-4

Keywords

Navigation