Skip to main content
Log in

Effect of inhomogeneous deformation on the electronic structure of SnO2 and Sn x Sb1–x O2 phases

  • Structural Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The electronic structures of various phases in the Sn–Sb–O2 system under pressure and under tetragonal, monoclinic, and orthorhombic deformation are studied. Calculations are performed using the first-principles pseudopotential method. It is established that SnO2 undergoes the following phase transitions under pressure: rutile–pyrite (17 GPa) and pyrite–fluorite (138 GPa). It is also found that doping SnO2 with Sb leads to a shift of the Fermi level to the conduction band and to additional resonant states below the valence band. Inhomogeneous deformation of Sn x Sb1–x O2, x = 1.00; 0.94; 0.88, at δ ≤ 0.2 causes a stress up to 6.2 GPa, depending on the strain. An analysis of the density of electron states in the bandgap of the deformed structures shows that the gap broadens under tetragonal deformation and narrows under orthorhombic and monoclinic deformation. The theoretical results obtained should be taken into account in interpreting the piezoresistive properties of Sn–Sb–O2-based thick films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Hainess and J. M. Leger, “X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides,” Phys. Rev. B, 55, 11144–11154 (1997).

    Article  Google Scholar 

  2. H. Hekkwig, A. F. Goncharov, E. Gegoryanz, et al., “Brillouin and Raman spectroscopy of the ferroelastic rutile–to–CaCl2 transition in SnO2 at high pressure,” Phys. Rev. B, 67, 174110–174117 (2003).

    Article  Google Scholar 

  3. S. Ono, K. Funakoshi, A. Nozawa, and T. Kikegawa, “High-pressure phase transitions in SnO2,” J. Appl. Phys., 97, 073523–073525 (2006).

    Article  Google Scholar 

  4. S. R. Shieh, A. Kubo, T. S. Duffy, et al., “High-pressure in SnO2 to 117 GPa,” Phys. Rev. B, 73, 014105– 014112 (2006).

    Article  Google Scholar 

  5. Y. He, J. F. Liu, W. Chen, et al., “High-pressure behavior of SnO2 nanocrystals,” Phys. Rev. B, 72, 212102–212106 (2005).

    Article  Google Scholar 

  6. J. Z. Jiang, L. Gerward, and J. S. Olsen, “Pressure induced phase transition in nanocrystal SnO2,” Scipta Mаt., 44, 1983–1986 (2001).

    CAS  Google Scholar 

  7. K. Parlinski and Y. Kawazoe, “Ab initio study of phonons in the rutile structure of SnO2 under pressure,” Eur. Phys., 13, 670–683 (2000).

    Google Scholar 

  8. N. E. Christensen and A. Svane, “Electronic and structural properties of SnO under pressure,” Phys. Rev. B, 72, 014109–014118 (2005).

    Article  Google Scholar 

  9. L. A. Errico, “Ab initio FP–LAPW study of the semiconductors SnO and SnO2,” Physica, 389, 140–144 (2007).

    Article  CAS  Google Scholar 

  10. C. Sevik and C. Bulutay, “High dielectric constant and wide band gap inverse silver oxide phases of the ordered ternary alloys of SiO2, GeO2 and SnO2,” Phys. Rev. B, 74, 193201–193205 (2006).

    Article  Google Scholar 

  11. J. Xu, S. Huang, and Z. Wang, “First principle study on the electronic structure of fluorine-doped SnO2,” Solid State Commun., 140, 527–531 (2009).

    Article  Google Scholar 

  12. E. Deligoz, K. Colakoglu, and Y. O. Ciftci, “The structural, elastic and electronic properties of the pyrite-type phase for SnO2,” J. Phys. Chem. Solids, 69, 859–864 (2008).

    Article  CAS  Google Scholar 

  13. G. Qin, D. Li, Z. Chen, et al., “Structural, electronic and optical properties of Sn1–x Sb x O2,” Comput. Mat. Sci., 46, 418–424 (2009).

    Article  CAS  Google Scholar 

  14. K. M. Rahman, C. Durning, S. Schneider, et al., “Annealing and microstructural characterization of tin-oxide based thick film resistors,” J. Electroceram., 9, No. 2, 137–150 (2002).

    Article  CAS  Google Scholar 

  15. D. E. Dyshel, “Electrophysical properties of resistive thick films based on powdered Sn0.9Sb0.1O2 and glasses with additions of LaB6,” Powder Metall. Met. Ceram., 37, No. 7–8, 438–442 (1998).

    Article  CAS  Google Scholar 

  16. B. M. Rud’, A. G. Gonchar, and E. Ya. Tel’nikov, “Tensoresistive effect in thick films based on antimony-doped tin dioxide,” Sens. Elektron. Mikrosys. Tekhnol., No. 1, 72–79 (2005).

  17. B. M. Rud’, A. G. Gonchar, V. E. Shelud’ko, et al., “Effect of residual thermal stresses on the strain sensitivity of thick films based on Sn0.9Sb0.1O2,” Ukr. Fiz. Zh., 51, No. 11–12, 1098–1104 (2006).

    Google Scholar 

  18. S. Baroni, A. Dal Corso, S. de Gironcoli, et al., Quantum ESPRESSO, http://www.pwscf.org.

  19. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, 41, 7892–7895 (1990).

    Article  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  21. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188– 5192 (1976).

    Article  Google Scholar 

  22. S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films, 176, 99–110 (1989).

    Article  CAS  Google Scholar 

  23. J. Haines, J. M. Léger, and O. Pa Schulte, “Modified fluorite-type structures in metal dioxides at high pressure,” Science, 271, 629–631 (1996).

    Article  CAS  Google Scholar 

  24. L. Liu, “A fluorite isotype of SnO2 and a new modification of TiO2: implications for the Earth’s lower mantle,” Science, 199, 422–425 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ivashchenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 5–6 (485), pp. 131–140, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashchenko, V.I., Rud, B.M., Gonchar, A.G. et al. Effect of inhomogeneous deformation on the electronic structure of SnO2 and Sn x Sb1–x O2 phases. Powder Metall Met Ceram 51, 353–362 (2012). https://doi.org/10.1007/s11106-012-9440-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9440-3

Keywords

Navigation