Skip to main content

Advertisement

Log in

Effect of pressure–temperature treatment on the properties of antimony-doped tin dioxide

  • Refractory and Ceramic Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Compact samples are produced from antimony-doped tin dioxide in a high-pressure cell at a hydrostatic pressure of 4 GPa and a temperature of 873 K. Pressure–temperature treatment has resulted in a material exhibiting high density and hardness. Its electrical and physical properties are studied. The temperature dependence of resistivity shows that the test material is a degenerate semiconductor with low (1.5 meV) activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. R. Bueno and J. A. Varela, “Electronic ceramics based on polycrystalline SnO2, TiO2 and (Sn x Ti1-x )O2 solid solution,” Mater. Res., 9, No. 3, 293–300 (2006).

    Google Scholar 

  2. J. Fan, H. Zhaoa, Y. Xi, et al., “Characterization of SnO2–CoO–MnO–Nb2O5 ceramics,” J. Europ. Ceram. Soc., 30, 545–548 (2010).

    Article  CAS  Google Scholar 

  3. J. A. Aguilar-Martinez, A. B. Glot, A. V. Gaponov, et al., “Current–voltage characteristics of SnO2– Co3O4–Cr2O3–Sb2O5 ceramics,” J. Phys. D: Appl. Phys., 42, No. 20, 5401 (2009).

    Article  Google Scholar 

  4. D. Maestre, A. Cremades, and J. Piqueras, “Direct observation of potential barrier formation at grain boundaries of SnO2 ceramics,” Semicond. Sci. Technol., 19, 1236–1239 (2004).

    Article  CAS  Google Scholar 

  5. T. Krishnakumar, R. Jayaprakash, N. Pinna, et al., “Sb–SnO2-nanosized-based resistive sensors for NO2 detection,” J. Sensors, 2009, 965 (2009).

    Google Scholar 

  6. J. A. Varela, J. A. Cerri, E. R. Leite, et al., “Microstructural evolution during sintering of CoO doped SnO2 ceramics,” Ceram. Int., 25, 253–256 (1999).

    Article  CAS  Google Scholar 

  7. M. Yoshinaka, K. Hirota, M. Ito, et al., “Hot isostatic pressing of reactive SnO2 powder,” J. Am. Ceram. Soc., 82, No. 1, 216–218 (1999).

    Article  CAS  Google Scholar 

  8. O. Scarlat, S. Mihaiu, Gh. Aldica, et al., “Enhanced properties of tin oxide (IV) based materials by field activated sintering,” J. Am. Ceram. Soc., 86, No. 6, 893–897 (2003).

    Article  CAS  Google Scholar 

  9. I. Saadeddin, H. S. Hilal, B. Pecquenard, et al., “Simultaneous doping of Zn and Sb in SnO2 ceramics: Enhancement of electrical conductivity,” Solid State Sci., 8, 7–13 (2006).

    Article  CAS  Google Scholar 

  10. J. A. Aguilar-Martinez, M. B. Hernandez, A. B. Glot, et al., “Microstructure and electrical properties in SnO2 ceramics with sequential addition of Co, Sb and Ca,” J. Phys. D: Appl. Phys., 40, No. 22, 7097–7102 (2007).

    Article  CAS  Google Scholar 

  11. O. D. Jayakumar, V. Sudarsan, and S. K. Kulshreshtha, “Metallic nature of Sn1–x Sb x O2±δ (x = 0.0, 0.10, and 0.20) mixed oxides: probed by 119Sn MAS NMR,” Phys. B: Condens. Matter, 392, No. 1–2, 67–71 (2007).

    Article  CAS  Google Scholar 

  12. G. Qin, D. Li, Z. Chen, et al., “Structural, electronic and optical properties of Sn1–x Sb x O2,” Comput. Mat. Sci., 46, No. 2, 418–424 (2009).

    Article  CAS  Google Scholar 

  13. R. G. Duan, G. D. Zhan, J. D. Kuntz, et al., “Processing and microstructure of high-pressure consolidated ceramic nanocomposites,” Scripta Mater., 51, No. 12, 1135–1139 (2004).

    Article  CAS  Google Scholar 

  14. L. D. Loch, “The semiconducting nature of stannic oxide,” J. Electrochem. Soc., 110, No. 10, 1081–1083 (1963).

    Article  CAS  Google Scholar 

  15. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci., 79, No. 2–4, 47–154 (2005).

    Article  CAS  Google Scholar 

  16. D. E. Dyshel’, “Influence of the phase composition on the electrical conductivity of gas sensors based on antimony-doped tin dioxide films,” Powder Metall. Met. Ceram., 40, No. 5–6, 282–291 (2001).

    Article  Google Scholar 

  17. C. A. Vincent, “Preparation and properties of semiconducting polycrystalline tin oxide,” J. Electrochem. Soc., 119, No. 4, 518–521 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowlegements

The study has been supported by the Science & Technology Center of Ukraine, Project No. 3927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gonchar.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 3–4 (484), pp. 82–89, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonchar, A.G., Rud’, B.M., Bykov, A.I. et al. Effect of pressure–temperature treatment on the properties of antimony-doped tin dioxide. Powder Metall Met Ceram 51, 191–197 (2012). https://doi.org/10.1007/s11106-012-9416-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9416-3

Keywords

Navigation