Skip to main content

Advertisement

Log in

Laser synthesis and comparative testing of a three-dimensional porous matrix of titanium and titanium nickelide as a repository for stem cells

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper discusses the prospects of layer-by-layer synthesis of porous tissue scaffolds (matrices) of titanium and NiTi (nitinol) as a repository for stem cells. The experiments are performed on primary cultures of human dermal fibroblasts of 4–18 passages. The culture of dermal fibroblasts is obtained from the skin and muscle tissue of 6 to 10-week abortuses with the method of primary explants. The role of surface morphology of porous matrices of these materials in cell adhesion and proliferation is examined in comparison with cast dental titanium. The surface microstructure and roughness are analyzed with optical and scanning electron microscopy before and after experiments in vitro. The elemental analysis is used to determine the biochemical composition of post-experimental porous matrix structures. The results show high chemotaxis of cells to the samples and effect of the matrix composition on the development of cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. M. Kanczler, S. Mirmalek-Sani, N. A. Hanley, et al., “Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds,” Acta Biomater., 5, 2063–2071 (2009).

    Article  CAS  Google Scholar 

  2. K. F. Leong, K. K. S. Phua, C. K. Chua, et al., “Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique,” Proc. Inst. Mech. Eng. Part H, 215, 191–201 (2001).

    Article  CAS  Google Scholar 

  3. E. Behravesh, A. Yasko, P. Angel, and A. Mikos, “Synthetic biodegradable polymers for orthopedic applications,” Clin. Orthop., 367S, 118–185 (1999).

    Google Scholar 

  4. K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterials development for bone tissue engineering,” Biomaterials, 21, 2347–2359 (2000).

    Article  CAS  Google Scholar 

  5. H. L. Allcock, A. A. Ambroso, M. Attawia, et al., “A highly porous 3-dimensional polyphophazene polymer matrix for skeletal tissue regeneration,” J. Biomed. Mater. Res., 30, 133–138 (1996).

    Article  Google Scholar 

  6. N. Ogura, M. Kawada, W. Chang, et al., “Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin,” J. Oral Sci., 46, No. 4, 207–213 (2004).

    Article  CAS  Google Scholar 

  7. V. I. Itin, G. A. Pribytkov, I. A. Khlusov, et al., “Implant as a carrier of cell material of porous permeable titanium,” Kletochn. Transplantol. Tkan. Inzhener., 5, No. 3, 59–63 (2006).

    Google Scholar 

  8. O. Zinger, K. Anselme, A. Denzer, et al., “Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography,” Biomaterials, 25, No. 14, 2695–2711 (2004).

    Article  CAS  Google Scholar 

  9. I. V. Shishkovsky, Y. Morozov, and I. Smurov, “Nanostructural self-organization under selective laser sintering on exothermal powder mixtures,” Appl. Surf. Sci., 255, No. 10, 5565–5568 (2009).

    Article  CAS  Google Scholar 

  10. N. K. Tolochko, V. V. Savich, T. Laoui, et al., “Dental root implants produced by the combined selective laser sintering/melting of titanium powders,” Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl., 216, 267–270 (2002).

    CAS  Google Scholar 

  11. T. Hayashi, K. Maekawa, M. Tamura, and K. Hanyu, “Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes,” Jap. SME Int. J. Ser. A, 48, No. 1, 369–275 (2005).

    Article  Google Scholar 

  12. H. Nakamura, L. Saruwatari, H. Aita, et al., “Molecular and biomechanical characterization of mineralized tissue by dental pulp cells on titanium,” J. Dent. Res., 84, No. 6, 515–520 (2005).

    Article  CAS  Google Scholar 

  13. A. Joob-Fancsaly, T. Divinyi, A. Fazekas, et al., “Pulsed laser-induced micro- and nanosized morphology and composition of titanium dental implants,” Smart Mater. Struct., 11, 819–824 (2002).

    Article  CAS  Google Scholar 

  14. H.-M. Kim, H. Takadama, F. Miyaji, et al., “Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment,” J. Mater. Sci.: Mater. Med., 11, 555–559 (2000).

    Article  CAS  Google Scholar 

  15. P. Fischer, V. Romano, H. P. Weber, et al., “Sintering of commercially pure titanium powder with a Nd:YAG laser source,” Acta Mater., 51, 1651–1662 (2003).

    Article  CAS  Google Scholar 

  16. B. Engel and D. L. Bourell, “Titanium alloy powder preparation for SLS,” Rapid Prototyping J., 6, 97–106 (2000).

    Article  Google Scholar 

  17. U. Suman Das, M. Wohlert, J. J. Beaman, and D. L. Bourell, “Processing of titanium net shapes by SLS/HIP,” Mater. Des., 20, 115–121 (1999).

    Article  Google Scholar 

  18. P. Buma, P. J. M. van Loon, H. Versleyen, et al., “Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite coated intramedullarv implants of different stiffness: a pilot study on the goat,” Biomaterials, 18, No. 1, 251–1260 (1997).

    Article  Google Scholar 

  19. Y. Cai, Y. Liu, W. Yan, et al., “Role of hydroxyapatite nanoparticle size in bone cell proliferation,” J. Mater. Chemistry, 17, No. 36, 3780–3787 (2007).

    Article  CAS  Google Scholar 

  20. E. Tsuruga, H. Takita, H. Itoh, et al., “Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis,” J. Biochemistry, 121, No. 2, 317–324 (1997).

    CAS  Google Scholar 

  21. R. Rose, L. A. Cyster, D. M. Grant, et al., “In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel,” Biomaterials, 25, 5507–5514 (2004).

    Article  CAS  Google Scholar 

  22. V. Salih, G. Georgiou, J. C. Knowles, and I. Olsen, “Glass reinforced hydroxyapatite for hard tissue surgery. Part II: in vitro evaluation of bone cell growth and function,” Biomaterials, 22, 2817–2824 (2001).

    Article  CAS  Google Scholar 

  23. C. K. Chua, K. F. Leong, K. H. Tan, et al., “Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite,” J. Mat. Sci.: Mater. Med., 15, 1113–1121 (2004).

    Article  CAS  Google Scholar 

  24. H. C. Jiang and L. J. Rong, “Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method,” Surf. Coat. Techn., 201, 1017–1021 (2006).

    Article  CAS  Google Scholar 

  25. F. E. Wiria, K. F. Leong, C. K. Chua, and Y. Liu, “Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering,” Acta Biomaterialia, 3, 1–12 (2007).

    Article  CAS  Google Scholar 

  26. V. É. Gyunter (ed.), Shape-Memory Medical Materials and Implants [in Russian], Izd. Tomsk. Univ., Tomsk (1998), p. 487.

  27. H. C. Man, Z. D. Cui, and T. M. Yue, “Corrosion properties of laser surface melted NiTi shape memory alloy,” Scripta Mater., 45, 1447–1453 (2001).

    Article  CAS  Google Scholar 

  28. M. Kohl, M. Bram, H.-P. Buchkremer, et al., “Production of highly porous near-net-shape NiTi components for biomedical application,” in: Proc. 5th Int. Conf. Porous Metals and Metallic Foams (MetFoam 2007), Canada, Montreal (2008), pp. 295–298.

  29. A. Michiard, E. Engel, and C. Aparicio, “Oxidized NiTi surfaces enhance differentiation of osteoblast-like cells,” J. Biomed. Mater. Res. Part A, 85, No. 1, 108–114 (2008).

    Article  Google Scholar 

  30. B. Clarke, P. Kingshott, and X. Hou, “Effect of nitinol wire surface properties on albumin adsorption,” Acta Biomaterialia, 3, 103–111 (2007).

    Article  CAS  Google Scholar 

  31. J. Kapanen, A. Ilvesaro J. Danilov, et al., “Behavior of Nitinol in osteoblast-like ROS-17 cell cultures,” Biomaterials, 23, 645–650 (2002).

    Article  CAS  Google Scholar 

  32. S. Kujalaa, A. Pajala, M. Kallioinen, et al., “Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon,” Biomaterials, 25, 353–358 (2004).

    Article  Google Scholar 

  33. C. Y. Li, X. J. Yang, L. Y. Zhang, et al., “In vivo histological evaluation of bioactive NiTi alloy after two years implantation,” Mater. Sci. Eng., C27, 122–126 (2007).

    Google Scholar 

  34. S. W. Robertson and R. O. Ritchie, “In vitro fatigue–crack growth and fracture toughness behavior of thinwalled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects,” Biomaterials, 28, 700–709 (2007).

    Article  CAS  Google Scholar 

  35. T. D. Sargeant, M. S. Raoa, C.-Y. Koh, and S. I. Stuppa, “Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers,” Biomaterials, 29, 1085–1098 (2008).

    Article  CAS  Google Scholar 

  36. P. Sevilla, C. Aparicio, J. A. Planell, and F. J. Gil, “Comparison of the mechanical properties between tantalum and nickel–titanium foams implant materials for bone ingrowth applications,” J. Alloys Compd., 439, 67–73 (2007).

    Article  CAS  Google Scholar 

  37. S. Shabalovskaya, J. Anderegg, and J. van Humbeeck, “Critical overview of Nitinol surfaces and their modifications for medical applications,” Acta Biomaterialia, 4, 447–67 (2008).

    Article  CAS  Google Scholar 

  38. C. Wirth, V. Comte, C. Lagneau, et al., “Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts,” Mater. Sci. Eng., C25, 51–60 (2005).

    CAS  Google Scholar 

  39. S. Wu, X. Liu, Y. L. Chan, et al., “In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing,” Surf. Coat. Technol., 202, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  40. I. V. Shishkovskii, Laser Synthesis of Functional Mesostructures and Bulk Parts [in Russian], Fizmatlit, Moscow (2009), p. 424.

    Google Scholar 

  41. R. Bibb, D. Eggbeer, and R. Williams, “Rapid manufacture of removable partial denture frameworks,” Rapid Prototyping J., 12, No. 2, 95–99 (2006).

    Article  Google Scholar 

  42. J. He, D. Li, B. Lu, et al., “Custom fabrication of a composite hemi-knee joint based on rapid prototyping,” Rapid Prototyping J., 12, No. 4, 198–205 (2006).

    Article  Google Scholar 

  43. D. Ibrahim, T. L. Broilo, C. Heitz, et al., “Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy,” J. Cranio-Maxillofac. Surg., 37, 167–173 (2009).

    Article  Google Scholar 

  44. C. Leiggener, E. Messo, A. Thor, et al., “A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps,” Int. J. Oral Maxillofac. Surg., 38, 187–192 (2009).

    Article  CAS  Google Scholar 

  45. X. Li, J. Wang, L. L. Shaw, and T. B. Cameron, “Laser densification of extruded dental porcelain bodies in multi-material laser densification process,” Rapid Prototyping J., 11, No. 1, 52–58 (2005).

    Article  Google Scholar 

  46. C. B. Pham, K. F. Leong, T. C. Lim, and K. S. Chian, “Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication,” Rapid Prototyping J., 14, No. 4, 246–253 (2008).

    Article  Google Scholar 

  47. J. T. Rimell and P. M. Marquis, “Selective laser sintering of ultra high molecular weight polyethylene for clinical applications,” Inc. J. Biomed. Mater. Res. (Appl Biomater.), 53, 414–420 (2000).

    Article  CAS  Google Scholar 

  48. J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollisterc, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials, 24, 181–194 (2003).

    Article  CAS  Google Scholar 

  49. B. Vandenbroucke and J.-P. Kruth, “Selective laser melting of biocompatible metals for rapid manufacturing of medical parts,” Rapid Prototyping J., 13, No. 4, 196–203 (2007).

    Article  Google Scholar 

  50. J. M. Williams, A. I. Adewunmi, R. M. Schek, et al., “Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering,” Biomaterials, 26, 4817–4827 (2005).

    Article  CAS  Google Scholar 

  51. R. D. Goodridge, D. J. Wood, C. Ohtsuki, and K. W. Dalgarno, “Biological evaluation of an apatite–mullite glass-ceramic produced via selective laser sintering,” Acta Biomaterialia, 3, 221–231 (2007).

    Article  CAS  Google Scholar 

  52. A. A. Krel’ and L. N. Furtseva, “Methods for determining oxyproline in biological media and their use in clinical practices,” Vopr. Med. Khim., 6, 635–640 (1968).

    Google Scholar 

Download references

Acknowledgements

The research was sponsored from the Russian Fundamental Research Fund (Project No. 10-08-00208-a) and Grant under the Fundamental Sciences to Medicine Program of the Russian Academy of Sciences (stages for 2009–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shishkovskii.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 50, No. 9–10 (481), pp. 42–57, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishkovskii, I.V., Morozov, Y.G., Fokeev, S.V. et al. Laser synthesis and comparative testing of a three-dimensional porous matrix of titanium and titanium nickelide as a repository for stem cells. Powder Metall Met Ceram 50, 606–618 (2012). https://doi.org/10.1007/s11106-012-9366-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9366-9

Keywords

Navigation