Skip to main content
Log in

Investigation of the Morphology and Structure of Porous Hybrid 3D Scaffolds Based on Polycaprolactone Involving Silicate-Containing Hydroxyapatite

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studies into microporous scaffolds based on polycaprolactone, in particular, involving nanoparticles and microparticles of modified (silicon-containing) hydroxyapatite (hybrid scaffolds) are presented. When hydroxyapatite particles are used during the electrospinning of polymer scaffolds, their porosity is found to increase substantially and a structure with nanofibers and microfibers can be created. X-ray phase analysis demonstrates that the characteristic lines of polycaprolactone and hydroxyapatite exist in the 3D hybrid scaffold structure. According to the data of infrared (IR) spectroscopy of the hydroxyapatitepowder precursor, (SiO4)4– ions are embedded in its lattice. The results of studies into the surface wettability indicate that the contact angles of wetting with water are smaller for hybrid scaffolds than for pure polycaprolactone scaffolds. Adhesive and proliferative activity tests of human mesenchymal stem cells (MSCs) performed upon hybrid-scaffold cultivation on the surface, as well as histologic investigations, indicate the high biocompatibility of the samples. On the basis of a polymerase chain reaction, it is revealed that the differentiation of MSCs occurs in the osteogenic direction. On account of a porous structure, hybrid scaffolds can be employed to recover bone-tissue defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hakkarainen, Degradable Aliphatic Polyesters (Springer, Berlin, Heidelberg, 2002), p.113.

    Book  Google Scholar 

  2. A. Gloria, F. Causa, T. Russo, et al., Biomacromolecules 13 (11), 3510 (2012).

    Article  Google Scholar 

  3. G. Tetteh, A. S. Khan, R. M. Delaine-Smith, et al., J. Mech. Behav. Biomed. Mater. 39, 95 (2014).

    Article  Google Scholar 

  4. J. Arends and W. L. Jongebloed, Caries Res. 11 (3), 186 (1977).

    Article  Google Scholar 

  5. M. Mastrogiacomo, A. Corsi, E. Francioso, et al., Tissue Eng. 12 (5), 1261 (2006).

    Article  Google Scholar 

  6. M. Ding, A. Odgaard, F. Linde, et al., J. Orthop. Res. 20 (3), 615 (2002).

    Article  Google Scholar 

  7. S. Kedem, J. Schmidt, Y. Paz, et al., Langmuir 21 (12), 5600 (2005).

    Article  Google Scholar 

  8. X. L. Deng, G. Sui, M. L. Zhao, et al., J. Biomater. Sci., Polym. Ed. 18 (1), 117 (2007).

    Article  Google Scholar 

  9. V. Thomas, S. Jagani, K. Johnson, et al., J. Nanosci. Nanotechnol. 6 (2), 487 (2006).

    Article  Google Scholar 

  10. F. Yang, S. K. Both, X. Yang, et al., Acta Biomater. 5 (9), 3295 (2009).

    Article  Google Scholar 

  11. A. G. Mikos, G. Sarakinos, M. D. Lyman, et al., Biotechnol. Bioeng. 42 (6), 716 (1993).

    Article  Google Scholar 

  12. H. Bittiger, R. H. Marchessault, and W. D. Niegisch, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26 (12), 1923 (1970).

    Article  Google Scholar 

  13. H. Miraoui and P. J. Marie, Gene 468 (1–2), 1 (2010).

    Article  Google Scholar 

  14. S. P. Grogan, T. Olee, K. Hiraoka, et al., Arthritis Rheum. 58 (9), 2754 (2008).

    Article  Google Scholar 

  15. J. Xu, Z. Li, Y. Hou, et al., Am. J. Transl. Res. 7 (12), 2527 (2015).

    Google Scholar 

  16. A. Augello and C. De Bari, Hum. Gene Ther. 21 (10), 1226 (2010).

    Article  Google Scholar 

  17. M. Bruderer, R. G. Richards, M. Alini, et al., Eur. Cells Mater. 28, 269 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Surmenev.

Additional information

Original Russian Text © S.N. Gorodzha, M.A. Surmeneva, I.I. Selezneva, A.M. Ermakov, V.V. Zaitsev, R.A. Surmenev, 2018, published in Poverkhnost’, 2018, No. 7, pp. 92–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodzha, S.N., Surmeneva, M.A., Selezneva, I.I. et al. Investigation of the Morphology and Structure of Porous Hybrid 3D Scaffolds Based on Polycaprolactone Involving Silicate-Containing Hydroxyapatite. J. Surf. Investig. 12, 717–726 (2018). https://doi.org/10.1134/S1027451018040092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018040092

Keywords

Navigation