Skip to main content
Log in

Trefilov and strength physics today

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper discusses the main topics of the plenary report given at the 49th International Conference “Relevant Problems of Strength” (Kiev, June 14–17, 2010) dedicated to the 80th anniversary of Academician Trefilov’s birth. Special attention is paid to strengthening in transition from micro- to nanosizes. It is shown that S-functions can be used to obtain a generalized equation for the dependence of the yield strength on grain size with regard to changes in mechanisms of strengthening in polycrystals in the vicinity of grains with critical sizes dcr1 and dcr2. This equation can describe softening in transition to nanostructures (inverse Hall–Petch relation) and abrupt strengthening under increased intergranular cohesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. 49th Int. Conf. Relevant Problems of Strength for the 80th Birth Anniversary of Trefilov, Academician of the National Academy of Sciences and Russian Academy of Sciences [in Russian], Inst. Probl. Materialoved., NAN Ukrainy, Kiev (2010), p. 290.

  2. S. A. Firstov, “Seventieth Birthday of Viktor Ivanovich Trefilov,” Powder Metall. Met. Ceram., 39, No. 7–8, 325–330 (2000).

    Article  CAS  Google Scholar 

  3. V. I. Trefilov, Life and Activity (Selected Papers) [in Russian], in 2 Vols., Akademperiodika, Kiev (2005).

  4. V. I. Trefilov, “Plastic deformation and fracture of metals,” in: Physics of Strength and Plasticity of Metals [in Russian], Metallurgizdat., Moscow (1963), pp. 190–254.

  5. V. N. Gridnev, Yu. Ya. Meshkov, S. P. Oshkaderov, and V. I. Trefilov, Physics of Electrothermal Hardening of Steel [in Russian], Naukova Dumka, Kiev (1973), p. 236.

  6. V. N. Gridnev and V. I. Trefilov, “Reversibility of martensitic transformations in heating of iron–carbon alloys,” DAN SSSR, 96, No. 4, 741–743 (1954).

    CAS  Google Scholar 

  7. V. N. Gridnev and V. I. Trefilov, “Structural changes in steel during electrotempering,” Izv. AN SSSR, Ser. Metall. Toplivo, No. 2, 62–69 (1959).

  8. V. N. Gridnev, V. I. Trefilov, S. A. Firstov, et al., Phase and Structural Transformations into Metastable States in Metals [in Russian], Naukova Dumka, Kiev (1988), p. 264.

    Google Scholar 

  9. V. N. Gridnev, V. N. Minakov, and V. I. Trefilov, “Method of high-speed x-ray photography,” in: Study of Steels and Alloys [in Russian], Nauka, Moscow (1964), pp. 384–388.

  10. V. N. Gridnev, V. N. Minakov, and V. I. Trefilov, “Mechanism of austenite formation in high-speed heating,” DAN SSSR, 154, 675–678 (1964).

    CAS  Google Scholar 

  11. V. V. Burdin, N. M. Grabenko, V. N. Gridnev, et al., “Formation of austenite below the phase equilibrium temperature in high-speed heating of carbon steels,” Fiz. Met. Metalloved., 35, No. 3, 5–9 (1973).

    Google Scholar 

  12. V. V. Burdin, V. N. Gridnev, V. N. Minakov, et al., “Phase transformations in iron and carbon steels,” in: Metal Physics [in Russian], Issue 55, Naukova Dumka, Kiev (1974), pp. 3–8.

  13. V. V. Burdin, V. N. Gridnev, V. N. Minakov, et al., “Formation of intermediate phases in (α ↔ γ) transformation in iron and carbon steels,” DAN SSSR, 217, 1045–1048 (1974).

    CAS  Google Scholar 

  14. V. I. Trefilov, “Role of the type of interatomic bond in brittle fracture,” in: Physics of Brittle Fracture of Metals [in Russian], Naukova Dumka, Kiev (1965), pp. 22–58.

  15. Yu. V. Mil’man and V. I. Trefilov, “Physical nature of the temperature dependence of yield stress,” in: Metal Fracture Mechanism [in Russian], Naukova Dumka, Kiev (1966), pp. 59–76.

  16. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Strength Physics of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975), p. 314.

    Google Scholar 

  17. V. I. Trefilov and V. F. Moiseev, Disperse Particles in Refractory Metals [in Russian], Naukova Dumka, Kiev (1978), p. 235.

    Google Scholar 

  18. V. I. Trefilov, Yu. V. Mil’man, R. K. Ivaschenko, et al., Structure, Texture, and Mechanical Properties of Deformed Molybdenum Alloys [in Russian], Naukova Dumka, Kiev (1983), p. 232.

    Google Scholar 

  19. V. I. Trefilov, V. F. Moiseev, É. P. Pechkovskii, et al., Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova Dumka, Kiev (1989), p. 156.

    Google Scholar 

  20. M. M. Ristic, V. I. Trefilov, Yu. V. Mil’man, et al., Structure and Mechanical Properties of Sintered Materials [in Russian], Serbian Academy of Sciences and Arts, Belgrade (1992), p. 254.

    Google Scholar 

  21. S. A. Firstov, “The main tendencies in elaboration of materials with high specific strength,” in: Metallic Materials with High Specific Strength, Kluwer Academic Publishers, Netherlands (2004), pp. 33–44.

  22. O. O. Bilous, N. I. Tsyganenko, M. P. Burka, et al., “Titanium-boride eutectic materials: effects of vanadium and niobium on high-temperature strength,” High Temp. Mat. Proc., 25, No. 1–2, 83–96 (2006).

    CAS  Google Scholar 

  23. S. A. Firstov, S. V. Tkachenko, and N. N. Kuz’menko, “Titanium cast iron and titanium steel,” Metalloved. Term. Obrab., No. 1 (634), 14–20 (2009).

    Google Scholar 

  24. Yu. V. Mil’man and I. V. Goncharova, “Nanoquasicrystals. Structure, mechanical properties, and application,” in: L. D. Merson (ed.), Advanced Materials. Technical and Medical Nanomaterials: Textbook [in Russian], Vol. 3, TGU MISIS, Moscow (2009), pp. 5–54.

    Google Scholar 

  25. Yu. V. Milman, “Mechanical behavior of nanostructured aluminum alloys containing quasicrystalline phase,” Mater Sci. Forum, 482, 77–82 (2005).

    Article  CAS  Google Scholar 

  26. O. D. Neikov, Yu. V. Milman, D. B. Miracle, et al., “Properties of rapidly solidified powder aluminum alloys for elevated temperatures produced by water atomization,” Adv. Powder Metall. Partic. Mat., 7, 14–27 (2002).

    Google Scholar 

  27. V. A. Manilov, V. G. Tkachenko, V. I. Trefilov, and S. A. Firstov, “Electron microscopy of structural changes in chromium deformation and softening,” Izv. AN SSSR. Metally, No. 2, 114–121 (1967).

    CAS  Google Scholar 

  28. V. I. Trefilov, S. A. Firstov, A. Lyuft, and K. Shlyaubitts, “Dislocation-structure evolution in bcc metals,” in: Problems in Solid-State Physics and Materials Science [in Russian], Nauka, Moscow (1976), pp. 97–121.

  29. S. A. Firstov, “Structurization and changes in mechanical properties of bcc metals under plastic deformation,” in: Collective Deformation Processes and Localization of Deformation [in Russian], Naukova Dumka, Kiev (1989), pp. 196–219.

  30. G. F. Sarzhan and S. A. Firstov, “Dislocation structure and strain hardening of bcc metals,” Izv. Vysh. Uzeb. Zaved. Fiz., No. 3, 23–34 (1991).

  31. A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, “Analysis of fragmented structure in molybdenum formed under active plastic deformation,” Fiz. Met. Materialoved., 42, No. 6, 1240–1246 (1976).

    Google Scholar 

  32. V. V. Rybin, Extensive Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986), p. 224.

    Google Scholar 

  33. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation [in Russian], Logos, Moscow (2000), p. 272.

    Google Scholar 

  34. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and properties of ultra-fine-grained materials produced by severe plastic deformation,” Mat. Sci. Eng. A, 168, 141–148 (1993).

    Article  Google Scholar 

  35. S. A. Firstov, T. G. Rogul, V. T. Marushko, and V. A. Sagaidak, “Structure and microhardness of polycrystalline chromium produced by magnetron sputtering,” Probl. Mat. Sci., No. 1, 201–204 (2003).

  36. S. A. Firstov, T. G. Rogul, and S. N. Dub, “Grain boundary engineering of nanostructured chromium films,” in: Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, Springer, Dordrecht (2005), pp. 225–232.

  37. S. A. Firstov, “Deformation and fracture of micro- and nanocrystalline materials,” in: Advanced Materials and Technologies [in Russian], in 2 Vols., Akademperiodika, Kiev (2003), pp. 610–630.

  38. Yu. F. Lugovskii and S. A. Firstov, “Effect of microstructure on the strength of composite materials under static and cyclic loading,” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2008).

  39. S. A. Firstov, T. G. Rogul’, and O. A. Shut, “Hardening of polycrystals in transfer from micro- to nanostructured state,” Fiz. Khim. Mekh. Mat., No. 6, 5–12 (2009).

  40. S. A. Firstov, T. G. Rogul, and O. A. Shut, “Transition from microstructures to nanostructures and ultimate hardening,” Functional Materials, 16, No. 4, 364–373 (2009).

    CAS  Google Scholar 

  41. R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials. II. Mechanical and physical properties,” Fiz. Met. Materialoved., 89, No. 1, 91–112 (2000).

    CAS  Google Scholar 

  42. H. Gleiter, “Nanostructured materials,” Prog. Mat. Sci., 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  43. H. Gleiter, “Materials with ultrafine microstructures: retrospectives and perspectives,” Nanostruct. Mat., 1, 1–19 (1992).

    Article  CAS  Google Scholar 

  44. V. G. Gryaznov and L. I. Trusov, “Size effects in micromechanics of nanocrystals,” Prog. Mat. Sci., 37, 289–401 (1993).

    Article  CAS  Google Scholar 

  45. K. S. Kumar, S. Suresh, M. F. Chisholm, et al., “Deformation of electrodeposited nanocrystalline nickel,” Acta Mat., 51, 387–392 (2003).

    Article  CAS  Google Scholar 

  46. S. Takeuchi, “The mechanism of the inverse Hall–Petch relation of nanocrystals,” Scripta Mat., 44, 1483–1487 (2001).

    Article  CAS  Google Scholar 

  47. S. Veprek, “A concept for the design of novel superhard materials,” J. Vac. Sci. Technol., A17, No. 5, 2401–2420 (1999).

    Google Scholar 

  48. A. S. Drachinskii, V. F. Moiseev, and V. I. Trefilov, “Transfer from intercrystalline to transcrystalline fracture in molybdenum,” in: Mechanism of Plastic Deformation [in Russian], Naukova Dumka, Kiev (1965), pp. 42–53.

  49. A. S. Drachinskii, V. F. Moiseev, and V. I. Trefilov, “Dependence on the type of plastic deformation (slip, twinning) on grain size of polycrystalline iron,” DAN SSSR, 154, No. 5, 1078–1081 (1964).

    Google Scholar 

  50. G. Langford and M. Cohen, “Strain hardening of iron by severe plastic deformation,” Transactions of the ASM, 62, No. 3, 623–638 (1969).

    CAS  Google Scholar 

  51. A. W. Thompson, “Substructure strengthening mechanisms,” Met. Trans., 8A, No. 6, 833–842 (1977).

    CAS  Google Scholar 

  52. A. H. Cottrell, “Discontinuous flow,” in: The Relation between the Structure and Mechanical Properties of Metals, Her Majesty’s Stationery Office, London (1963).

  53. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformable Structures [in Russian], Vol. 1, Saint-Petersburg (2003), p. 194.

  54. G. A. Malygin, “Effect of grain size distribution on the strength and plasticity of nanocrystalline materials,” Fiz. Tverd. Tela, 50, No. 6, 1013–1017 (2008).

    Google Scholar 

  55. V. A. Pozdnyakov and A. M. Glezer, “Structural fracture mechanisms nanocrystalline materials,” 47, No. 5, Fiz. Tverd. Tela, 793–800 (2005).

  56. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, “Yield stress of fine grained materials,” Acta. Mat., 46, No. 13, 4527–4534 (1998).

    Article  CAS  Google Scholar 

  57. E. É. Glikman, “Equilibrium segregation at grain boundaries and intercrystallite cold brittleness of solid solutions,” in: Metal Physics [in Russian], Issue 43, 42–51 (1972).

  58. S. A. Firstov and T. G. Rogul’, “Theoretical (ultimate) strength,” Dokl. NAN Ukrainy, No. 4, 110–116 (2007).

    Google Scholar 

  59. S. A. Firstov, T. G. Rogul, V. F. Gorban, and E. P. Pechkovsky, Ultimate strengthening, theoretical and limit tool hardness,” Key Eng. Materials, 409, 128–136 (2009).

    Article  CAS  Google Scholar 

  60. S. A. Firstov, V. F. Gorban’, É. P. Pechkovskii, and N. A. Mameka, “Indentation equation,” Dokl. NAN Ukrainy, No. 12, 100–106 (2007).

    Google Scholar 

  61. S. A. Firstov, V. F. Gorban’, and É. P. Pechkovskii, New Methodology for Processing and Analyzing the Results of Automatic Materials Indentation [in Russian], Logos, Kiev (2009), p. 83.

    Google Scholar 

  62. Inoue Akihisa, “High strength bulk amorphous alloys with low critical cooling rates (Overview),” Mat. Trans., 36, No. 7, 866–875 (1995).

    Google Scholar 

  63. Yu. K. Kovneristyi, “Bulk-decrystallizing metal alloys and nanostructured materials on their basis,” Metalloved. Term. Obrab. Met., No. 7 (601), 14–17 (2005).

  64. S. N. Grigor’ev, A. A. Andreev, and V. M. Shulaev, “Nanostructured wear-resistant coatings obtained by physical deposition in vacuum,” Uprochn. Tekhnol. Pokryt., No. 9, 57–71 (2005).

  65. O. A. Rozenberg, N. V. Novikov, S. E. Sheikin, et al., “Formation of gradient nanostructure on parts by plastic deformation,” Metallofiz. Noveish. Tekhnol., 26, No. 11, 1493–1500 (2004).

    CAS  Google Scholar 

  66. M. Danylenko, V. Gorban, Yu. Podrezov, et al., “Gradient structure formation by severe plastic deformation,” in: Zenji Horita (ed.), Nanomaterials by Severe Plastic Deformation, Trans. Tech. Publications, Zurich (2005), pp. 787–792.

    Google Scholar 

  67. I. Gornaya, K. Gorpenko, M. Bulanova, et al., “Influence of zirconium on phase composition, structure and mechanical properties of as-cast alloys of Ti–Al–Si system,” J. High Temp. Mat. Proc., Special Issue, No. 1–2, 59–66 (2006).

  68. I. D. Gorna, K. O. Gorpenko, O. Yu. Koval’, et al., “Structure and mechanical properties of Ti–Si–X alloys,” Fiz. Khim. Mekh. Mat., No. 3, 35–42 (2008).

  69. I. D. Gorna, K. O. Gorpenko, M. D. Bega, et al., “Effect of boron on the structure, phase composition, and mechanical properties of Ti–Si–X eutectic alloys,” Metallofiz. Noveish. Tekhnol., 28, Special Issue, 175–182 (2006).

    Google Scholar 

  70. G. He and M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus,” Mater. Sci. Eng. C, 25, 290–295 (2005).

    Article  Google Scholar 

  71. W. Yeh, S. K. Chen, and S. J. Lin, “Nanostructured high-entropy alloys with multiprincipal elements-novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, 299–314 (2004).

    Article  CAS  Google Scholar 

  72. X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, “Novel microstructure and properties of multicomponent CoCr–CuFeNiTix alloys,” Intermetallics, 15, No. 3, 357–370 (2007).

    Article  CAS  Google Scholar 

  73. C. Li, J. C. Li, M. Zhao, et al., “Microstructure and properties of AlTiNiMnBx high entropy alloys,” Mat. Sci. Technol., 24, No. 3, 376–378 (2008).

    Article  CAS  Google Scholar 

  74. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, et al., “Mechanical properties of multicomponent titanium alloy,” Probl. Prochn., No. 5, 178–189 (2010).

    Google Scholar 

  75. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, et al., “Mechanical properties of high-entropy alloys at high temperatures,” Vest. Sam. GTU, Ser. Fiz. Mat. Nauki, Samara (2009), pp. 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Firstov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 7–8 (474), pp. 19–33, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firstov, S.A. Trefilov and strength physics today. Powder Metall Met Ceram 49, 386–396 (2010). https://doi.org/10.1007/s11106-010-9249-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9249-x

Keywords

Navigation