Skip to main content

Micromechanics of Strength and Plasticity in Nanostructured Materials

  • Chapter
  • First Online:
Mechanics and Control of Solids and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 164))

  • 600 Accesses

Abstract

A brief review of the research activity provided during the last three decades in the Laboratory of Mechanics of Nanomaterials and Theory of Defects at the Institute for Problems in Mechanical Engineering of Russian Academy of Sciences in the field of micromechanics of strength and plasticity in nanostructured materials is presented. It covers the works aimed at explanation and theoretical description of the following features in mechanical behavior of these materials: deviations from the classical Hall-Petch law, homo- and heterogeneous nucleation of dislocations, grain boundary sliding and mechanisms of its accommodation, rotational deformation, deformation twinning, deformation-induced grain growth and refinement, and interaction between deformation and fracture processes. Some most important and interesting results are discussed and compared with available data of experimental studies and computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gutkin, M.Yu., Ovid’ko, I.A.: Defekty i mehanizmy plastichnosti v nanostrukturnyh i nekristallicheskih materialah (Defects and mechanisms of plasticity in nanostructured and non-crystalline materials). Yanus, Saint-Petersburg (2001)

    Google Scholar 

  2. Gutkin, M.Yu., Ovid’ko, I.A.: Fizicheskaya mehanika deformiruemyh nanostruktur. T. 1. Nanokristallicheskie materialy (Physical mechanics of deformed nanostructures. Vol. I. Nanocrystalline Materials). Yanus, Saint-Petersburg (2003)

    Google Scholar 

  3. Gutkin, M.Yu., Ovid’ko, I.A.: Plastic Deformation in Nanocrystalline Materials. Springer, Berlin, Heidelberg, New York (2004)

    Google Scholar 

  4. Koch, C.C., Ovid’ko, I.A., Seal, S., Veprek, S.: Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  5. Bobylev, S.V., Ovid’ko, I.A.: Granitsy zeren i plasticheskaya deformatsiya v nanomaterialah (Grain boundaries and plastic deformation in nanomaterials). Izd-vo Polytechn. un-ta, Saint-Petersburg (2016)

    Google Scholar 

  6. Ovid’ko, I.A., Semenov, B.N., Sheinerman, A.G.: Mehanika deformiruemyh nanomaterialov: uchebnoe posobie (Mechanics of deformable nanomaterials: textbook). Izd-vo S.-Peterb. un-ta, Saint-Petersburg (2013)

    Google Scholar 

  7. Gutkin, M.Yu., Ovid’ko, I.A., Pande, C.S.: Theoretical models of plastic deformation processes in nanocrystalline materials. Rev. Adv. Mater. Sci. 80, 80–102 (2001)

    Google Scholar 

  8. Gutkin, M.Yu., Ovid’ko, I.A.: Yield stress and plastic deformation of nanocrystalline materials. Usp. Mekh. 2, 68–125 (2003)

    Google Scholar 

  9. Gutkin, M.Yu., Ovid’ko, I.A.: Disclinations and rotational deformation in nanocrystalline materials. Rev. Adv. Mater. Sci. 4, 79–113 (2003)

    Google Scholar 

  10. Ovid’ko, I.A.: Interfacial defects in nanostructures. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 4, pp. 249–265. American Scientific Publishers, Stevenson Ranch, CA (2004)

    Google Scholar 

  11. Gutkin, M.Yu., Ovid’ko, I.A., Pande, C.S.: Physical mechanisms of plastic flow in nanocrystalline materials. In: Nalwa, H.S. (ed.) Nanoclusters and Nanocrystals, pp. 225–252. American Scientific Publishers, Stevenson Ranch, CA (2003)

    Google Scholar 

  12. Ovid’ko, I.A.: Deformation and diffusion modes in nanocrystalline materials. Int. Mater. Rev. 50, 65–82 (2005)

    Article  Google Scholar 

  13. Ovid’ko, I.A.: Superplasticity and ductility of superstrong nanomaterials. Rev. Adv. Mater. Sci. 10, 89–104 (2005)

    Google Scholar 

  14. Ovid’ko, I.A.: Defects and deformation mechanisms in nanostructured coatings. In: Cavaleiro, A., De Hosson, J.T.M. (eds.) Nanostructured Coatings, pp. 78–108. Springer, New York (2006)

    Chapter  Google Scholar 

  15. Ovid’ko, I.A.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694–1708 (2007)

    Article  Google Scholar 

  16. Ovid’ko, I.A.: Fracture processes in advanced nanocrystalline and nanocomposite materials. In: Shi, D. (ed.) NanoScience in Biomedicine, Chapter 21, pp. 537–567. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Gutkin, M.Yu.: Elastic and plastic deformation in nanocrystalline metals. In: Whang, S.H. (ed.) Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Chapter 12, pp. 329–374. Woodhead Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi (2011)

    Google Scholar 

  18. Ovid’ko, I.A.: Enhanced ductility and its mechanisms in nanocrystalline metallic materials. In: Whang, S.H. (ed.) Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Chapter 14, pp. 430–458. Woodhead Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi (2011)

    Chapter  Google Scholar 

  19. Ovid’ko, I.A., Sheinerman, A.G.: Micromechanisms for improved fracture toughness in nanoceramics. Rev. Adv. Mater. Sci. 29, 105–125 (2011)

    Google Scholar 

  20. Ovid’ko, I.A., Sheinerman, A.G.: Fracture behavior of nanocrystalline ceramics. In: Li, J.C.M. (ed.) Mechanical Properties of Nanocrystalline Materials, Chapter 9, pp. 245–275. Pan Stanford Publishing Pte Ltd., New York (2011)

    Google Scholar 

  21. Ovid’ko, I.A.: Crack generation in nanomaterials at high-strain-rate and quasistatic regimes of deformation. Mater. Phys. Mech. 12, 76–101 (2011)

    Google Scholar 

  22. Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Mechanics of crack growth processes in nanoceramics. Mater. Phys. Mech. 12, 1–29 (2011)

    Google Scholar 

  23. Ovid’ko, I.A., Langdon, T.G.: Enhanced ductility of nanocrystalline and ultrafine-grained metals. Rev. Adv. Mater. Sci. 30, 103–111 (2012)

    Google Scholar 

  24. Ovid’ko, I.A., Aifantis, E.C.: Nanocrystals & nanomechanics: mechanisms & models. A selective review. Rev. Adv. Mater. Sci. 35, 1–24 (2013)

    Google Scholar 

  25. Ovid’ko, I.A.: Mechanics of fracturing in nanoceramics. Phil. Trans. R. Soc. A 373, 20140129 (2015)

    Article  Google Scholar 

  26. Bobylev, S.V., Ovid’ko, I.A.: Accommodation of grain boundary sliding and fracture toughness enhancement in deformed nanocrystalline materials. Mater. Phys. Mech. 29, 43–70 (2016)

    Google Scholar 

  27. Ovid’ko, I.A., Sheinerman, A.G.: Plastic deformation and fracture processes in bulk nanotwinned materials and nanotwinned nanowires. In: Ebothe, J., Ahmed, W. (eds.) Nanofabrication Using Nanomaterials, pp. 46–64. One Central Press, Manchester, U.K. (2016)

    Google Scholar 

  28. Ovid’ko, I.A., Sheinerman, A.G.: Mechanical properties of nanotwinned metals: a review. Rev. Adv. Mater. Sci. 44, 1–25 (2016)

    Google Scholar 

  29. Skiba, N.V., Bobylev, S.V.: Twinning mechanism and yield stress in nanotwinned materials. Rev. Adv. Mater. Sci. 51, 86–89 (2011)

    Google Scholar 

  30. Ovid’ko, I.A., Valiev, R.Z., Zhu, Y.T.: Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater Sci. 94, 462–540 (2018)

    Article  Google Scholar 

  31. Sheinerman, A.G., Gutkin, M.Yu.: Strengthening and softening of nanoceramics: A brief review. Rev. Adv. Mater. Tech. 1, 46–53 (2019)

    Google Scholar 

  32. Skiba, N.V.: Review of mechanisms of nanograin generation. Rev. Adv. Mater. Tech. 1, 62–68 (2019)

    Article  Google Scholar 

  33. Skiba, N.V.: Mechanisms of deformation twin formation near crack tips in nanostructured materials. Rev. Adv. Mater. Tech. 2, 56–63 (2020)

    Article  Google Scholar 

  34. Sheinerman, A.G.: Plastic deformation of metal/graphene composites with bimodal grain size distribution: a brief review. Rev. Adv. Mater. Tech. 2, 1–8 (2019)

    Article  Google Scholar 

  35. Hall, E.O.: Deformation and ageing of mild steel. Proc. Phys. Soc. Lond. B 64, 747–753 (1951)

    Article  Google Scholar 

  36. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    Google Scholar 

  37. Lasalmonie, A., Strudel, J.L.: Influence of grain size on the mechanical behavior of some high strength materials. J. Mater. Sci. 21, 1837–1852 (1986)

    Article  Google Scholar 

  38. Armstrong, R.W.: 60 years of Hall-Petch: Past to present nano-scale connections. Mater. Trans. 55, 2–12 (2014)

    Article  Google Scholar 

  39. Cordero, Z.C., Knight, B.E., Schuh, C.A.: Six decades of the Hall-Petch effect - a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512 (2016)

    Article  Google Scholar 

  40. Chokshi, A.H., Rosen, A., Karch, J., Gleiter, H.: On the validity of the Hall-Petch relationship in nanocrystalline materials. Scripta Metall. 23, 1679–1684 (1989)

    Article  Google Scholar 

  41. Jang, J.S.C., Koch, C.C.: The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metall. Mater. 24, 1599–1604 (1990)

    Article  Google Scholar 

  42. Kocks, U.F.: The relation between polycrystal deformation and single crystal deformation. Metal. Trans. 1, 112l–1143 (1970)

    Google Scholar 

  43. Malygin, G.A.: Plasticity and strength of micro- and nanocrystalline materials. Phys. Solid State 49, 1013–1033 (2007)

    Article  Google Scholar 

  44. Pande, C.S., Cooper, K.P.: Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater Sci. 54, 689–706 (2009)

    Article  Google Scholar 

  45. Hahn, E.N., Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101–134 (2015)

    Article  Google Scholar 

  46. Kozlov, E.V., Glezer, A.M., Koneva, N.A., Popova, N.A., Kurzina, I.A.: Osnovy plasticheskoi deformatsii v nanostrukturnyh materialah (Fundamentals of Plastic Deformation of Nanostructured Materials). Fizmatlit, Moscow (2016)

    Google Scholar 

  47. Naik, S.N., Walley, S.M.: The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 55, 2661–2681 (2020)

    Article  Google Scholar 

  48. Gryaznov, V.G., Gutkin, M.Yu., Romanov, A.E., Trusov, L.I.: On the yield stress of nanocrystals. J. Mater. Sci. 28, 4359–4365 (1994)

    Google Scholar 

  49. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  50. Masumura, R.A., Hazzledine, P.M., Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46, 4527–4534 (1998)

    Article  Google Scholar 

  51. Gutkin, M.Yu., Ovid’ko, I.A., Pande, C.S.: Yield stress of nanocrystalline materials: Role of grain boundary dislocations, triple junctions and Coble creep. Philos. Mag. 84, 847–863 (2004)

    Google Scholar 

  52. Nazarov, A.A., Romanov, A.E., Valiev, R.Z.: On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall. Mater. 41, 1033–1040 (1993)

    Article  Google Scholar 

  53. Hahn, H., Mondal, P., Padmanabhan, K.A.: Plastic deformation of nanocrystalline materials. Nanostruct. Mater. 9, 603–606 (1997)

    Article  Google Scholar 

  54. Fedorov, A.A., Gutkin, M.Yu., Ovid’ko, I.A.: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887–898 (2003)

    Google Scholar 

  55. Volpp, T., Göring, E., Kuschke, W.-M., Arzt, E.: Grain size determination and limits to Hall- Petch behavior in nanocrystalline NiAI powders. Nanostruct. Mater. 8, 855–865 (1997)

    Article  Google Scholar 

  56. Fedorov, A.A., Gutkin, MYu., Ovid’ko, I.A.: Triple junction diffusion and plastic flow in fine-grained materials. Scripta Mater. 41, 51–55 (2002)

    Article  Google Scholar 

  57. Sheinerman, A.G., Castro, R.H.R., Gutkin, M.Yu.: A model for direct and inverse Hall-Petch relation for nanocrystalline ceramics. Mater. Lett. 260, 126886 (2020)

    Google Scholar 

  58. Sheinerman, A.G., Gutkin, M.Yu.: The role of grain boundaries and their triple junctions in strengthening and softening of nanocrystalline ceramics. Lett. Mater. 10, 547–550 (2020)

    Google Scholar 

  59. Hirth, J., Lothe, I.: Theory of Dislocations. Wiley, New York (1982)

    MATH  Google Scholar 

  60. Wu, X.L., Ma, E.: Dislocations in nanocrystalline grains. Appl. Phys. Lett. 88, 231911 (2006)

    Google Scholar 

  61. Wu, X.L., Ma, E.: Accommodation of large plastic strains and defect accumulation in nanocrystalline Ni grains. J. Mater. Res. 22, 2241–2253 (2007)

    Article  Google Scholar 

  62. Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W., Zhu, Y.T.: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632–634 (2003)

    Article  Google Scholar 

  63. Wu, X., Zhu, Y.T., Chen, M.W., Ma, E.: Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Mater. 54, 1685–1690 (2006)

    Article  Google Scholar 

  64. Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Mathaudhu, S.N., Kecskés, L.J.: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95, 031909 (2009)

    Google Scholar 

  65. Wang, Y.M., Bringa, E.M., McNaney, J.M., Victoria, M., Caro, A., Hodge, A.M., Smith, R., Torralva, B., Remington, B.A., Schuh, C.A., Jamarkani, H., Meyers, M.A.: Deforming nanocrystalline nickel at ultrahigh strain rates. Appl. Phys. Lett. 88, 061917 (2006)

    Google Scholar 

  66. Yamakov, V., Wolf, D., Phillpot, S.R., Gleiter, H.: Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50, 5005–5020 (2002)

    Article  Google Scholar 

  67. Van Swygenhoven, H.: Footprints of plastic deformation in nanocrystalline metals. Mater. Sci. Eng., A 483–484, 33–39 (2008)

    Article  Google Scholar 

  68. Gutkin, M.Yu., Ishizaki, T., Kuramoto, S., Ovid’ko, I.A.: Nanodisturbances in deformed Gum Metal. Acta Mater. 54, 2489–2499 (2006)

    Google Scholar 

  69. Cui, J.P., Hao, Y.L., Li, S.J., Sui, K.L., Li, D.X., Yang, R.: Reversible movement of homogenously nucleated dislocations in a \(\beta \)-titanium alloy. Phys. Rev. Lett. 102, 045503 (2009)

    Google Scholar 

  70. Gutkin, M.Yu., Ovid’ko, I.A.: Special mechanism for dislocation nucleation in nanomaterials. Appl. Phys. Lett. 88, 211901 (2006)

    Google Scholar 

  71. Gutkin, M.Yu., Ovid’ko, I.A.: Homogeneous nucleation of glide dislocation loops in nanoceramics. Phys. Solid State 50, 655–664 (2008)

    Google Scholar 

  72. Gutkin, M.Yu., Ovid’ko, I.A.: Homogeneous nucleation of dislocation loops in nanocrystalline metals and ceramics. Acta Mater. 56, 1642–1649 (2008)

    Google Scholar 

  73. Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A., Sheinerman, A.G.: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26, 1629–1644 (2010)

    Article  MATH  Google Scholar 

  74. Ovid’ko, I.A., Sheinerman, A.G.: Deformation twinning through nanoscale ideal shears in nano- and polycrystalline materials at ultra high stresses. Rev. Adv. Mater. Sci. 27, 189–194 (2011)

    Google Scholar 

  75. Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., Skiba, N.V.: Formation of deformation twins through ideal nanoshear events near crack tips in deformed nanocrystalline materials. Rev. Adv. Mater. Sci. 32, 75–81 (2012)

    Google Scholar 

  76. Ovid’ko, I.A., Sheinerman, A.G.: Crack generation initiated by nanoscale ideal shear in crystalline, nanocrystalline and metal-ceramic nanocomposite solids. Rev. Adv. Mater. Sci. 39, 84–91 (2014)

    Google Scholar 

  77. Bobylev, S.V., Gutkin, M.Yu., Ovid’ko, I.A.: Decay of low-angle tilt boundaries in deformed nanocrystalline materials. J. Phys. D Appl. Phys. 37, 269–272 (2004)

    Google Scholar 

  78. Bobylev, S.V., Gutkin, M.Yu., Ovid’ko, I.A.: Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater. 52, 3793–3805 (2004)

    Google Scholar 

  79. Bobylev, S.V., Gutkin, M.Yu., Ovid’ko, I.A.: Chain decay of low-angle tilt boundaries in nanocrystalline materials. Phys. Sol. State 46, 2053–2057 (2004)

    Google Scholar 

  80. Gutkin, M.Yu., Ovid’ko, I.A.: Generation of dislocation loops in deformed nanocrystalline materials. Phil. Mag. 86, 1483–1511 (2006)

    Google Scholar 

  81. Bobylev, S.V., Gutkin, M.Yu., Ovid’ko, I.A.: Partial and split dislocation configurations in nanocrystalline metals. Phys. Rev. B 73, 064102 (2006)

    Google Scholar 

  82. Bobylev, S.V., Gutkin, M.Yu., Ovid’ko, I.A.: Generation of gliding semi-loops of split dislocations by grain boundaries in nanocrystalline Al. Phys. Sol. State 48, 1495–1505 (2006)

    Google Scholar 

  83. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Generation of deformation twins in nanocrystalline metals: theoretical model. Phys. Rev. B 74, 172107 (2006)

    Google Scholar 

  84. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Mechanism of deformation-twin formation in nanocrystalline metals. Phys. Sol. State 49, 874–882 (2007)

    Google Scholar 

  85. Gutkin, M.Yu., Kolesnikova, A.L., Ovid’ko, I.A., Skiba, N.V.: Rotational deformation in fine-grained materials prepared by severe plastic deformation. J. Metastab. Nanocryst. 12, 47–57 (2002)

    Google Scholar 

  86. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Changes in the grain boundary misorientation caused by the emission of dislocation pairs. Tech. Phys. Lett. 28, 437–438 (2002)

    Google Scholar 

  87. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Transformations of grain boundaries due to disclination motion and emission of dislocation pairs. Mater. Sci. Eng., A 339, 73–80 (2003)

    Google Scholar 

  88. Gutkin, M.Yu., Kolesnikova, A.L., Ovid’ko, I.A., Skiba, N.V.: Disclinations and rotational deformation in fine-grained materials. Phil. Mag. Lett. 82, 651–657 (2002)

    Google Scholar 

  89. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Emission of partial dislocations by grain boundaries in nanocrystalline metals. Phys. Sol. State 46, 2042–2052 (2004)

    Google Scholar 

  90. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J. Phys. D Appl. Phys. 38, 3921–3925 (2005)

    Google Scholar 

  91. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Grain boundary sliding and lattice dislocation emission in nanocrystalline materials under plastic deformation. Phys. Sol. State 47, 1662–1674 (2005)

    Google Scholar 

  92. Ovid’ko, I.A., Sheinerman, A.G.: Dislocation emission from nanovoids in single-phase and composite nanocrystalline materials. Rev. Adv. Mater. Sci. 11, 46–55 (2006)

    Google Scholar 

  93. Wei, Q., Jia, D., Ramesh, K.T., Ma, E.: Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240–1242 (2002)

    Article  Google Scholar 

  94. Bobylev, S.V., Ovid’ko, I.A.: Partial and split dislocations in deformed nanocrystalline metals. Rev. Adv. Mater. Sci. 7, 75–82 (2004)

    Google Scholar 

  95. Zhu, Y.T., Liao, X.Z., Srinivasan, S.G., Zha, Y.H., Baskes, M.I., Zhou, F., Lavernia, E.J.: Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85, 5049–5051 (2004)

    Article  Google Scholar 

  96. Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A.: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scripta Mater. 60, 36–39 (2009)

    Article  Google Scholar 

  97. Orlova, T.S., Skiba, N.V., Mavlyutov, A.M., Murashkin, M.Yu., Valiev, R.Z., Gutkin, M.Yu.: Hardening by annealing and implementation of high ductility of ultra-fine grained aluminum: experiment and theory. Rev. Adv. Mater. Sci. 57, 224–240 (2018)

    Google Scholar 

  98. Gutkin, M.Yu., Latynina, T.A., Orlova, T.S., Skiba, N.V.: Mechanism of hardening of ultrafine-grained aluminum after annealing. Phys. Solid State 61, 1790–1799 (2019)

    Google Scholar 

  99. Skiba, N.V., Orlova, T.S., Gutkin, M.Yu.: Mechanism of implementation of high ductility in ultrafine-grained aluminum after annealing and subsequent deformation. Phys. Solid State 62, 2094–2100 (2020)

    Google Scholar 

  100. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Strengthening and softening mechanisms in nanocrystalline materials under superplastic deformation. Acta Mater. 52, 1711–1720 (2004)

    Google Scholar 

  101. Van Swygenhoven, H., Derlet, P.A.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001)

    Google Scholar 

  102. Monk, J., Hyde, B., Farkas, D.: The role of partial grain boundary dislocations in grain boundary sliding and coupled grain boundary motion. J. Mater. Sci. 41, 7741–7746 (2006)

    Article  Google Scholar 

  103. Wolf, D., Yamakov, V., Phillpot, S.R., Mukherjee, A.K., Gleiter, H.: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1–40 (2005)

    Article  Google Scholar 

  104. Morozov, N.F., Ovid’ko, I.A., Petrov, Yu.V., Sheinerman, A.G.: Generation and convergence of nanocracks in nanocrystalline materials deformed by grain boundary sliding. Rev. Adv. Mater. Sci. 19, 63–72 (2009)

    Google Scholar 

  105. Ovid’ko, I.A., Sheinerman, A.G.: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57, 2217–2228 (2009)

    Article  Google Scholar 

  106. Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A.: Transition from plastic shear into rotation deformation mode in nanocrystalline metals and ceramics. Rev. Adv. Mater. Sci. 19, 103–113 (2009)

    Google Scholar 

  107. Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010)

    Google Scholar 

  108. Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids. Phys. Rev. B 84, 094103 (2011)

    Google Scholar 

  109. Wu, X., Tao, N., Hong, Y., Liu, G., Xu, B., Lu, J., Lu, K.: Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater. 53, 681–691 (2005)

    Article  Google Scholar 

  110. Miura, H., Sakai, T., Andiarwanto, S., Jonas, J.J.: Nucleation of dynamic recrystallization at triple junctions in polycrystalline copper. Philos. Mag. 85, 2653–2669 (2005)

    Article  Google Scholar 

  111. Demkowicz, M.J., Argon, A.S., Farkas, D., Frary, M.: Simulation of plasticity in nanocrystalline silicon. Philos. Mag. 87, 4253–4271 (2007)

    Article  Google Scholar 

  112. Cao, A., Wei, Y.: Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel. Phys. Rev. B 76, 024113 (2007)

    Google Scholar 

  113. Romanov, A.E., Vladimirov, V.I.: Disclinations in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 9, pp. 191–402. North-Holland, Amsterdam (1992)

    Google Scholar 

  114. Romanov, A.E., Kolesnikova, A.L.: Application of disclination concept to solid structures. Prog. Mater Sci. 54, 740–769 (2009)

    Article  Google Scholar 

  115. Murayama, M., Howe, J.M., Hidaka, H., Takaki, S.: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295, 2433–2435 (2002)

    Article  Google Scholar 

  116. Gutkin, M.Yu., Ovid’ko, I.A.: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids. Philos. Mag. A 70, 561–575 (1994)

    Google Scholar 

  117. Gutkin, M.Yu., Mikaelyan, K.N., Ovid’ko, I.A.: Linear splitting of disclinations in polycrystalline and nanocrystalline solids. Sov. Phys.-Solid State (USA) 37, 300–301 (1995)

    Google Scholar 

  118. Gutkin, M.Yu., Ovid’ko, I.A., Mikaelyan, K.N.: On role of disclinations in relaxation and deformation processes in nanostructured materials. NanoStruct. Maters. 6, 779–782 (1995)

    Google Scholar 

  119. Gutkin, M.Yu., Mikaelyan, K.N., Ovid’ko, I.A.: Low-energy disclination structures at grain boundaries in polycrystalline and nanocrystalline solids. Phys. Status Solidi A 153, 337–346 (1996)

    Google Scholar 

  120. Ovid’ko, I.A.: Deformation of nanostructures. Science 295, 2386 (2002)

    Article  Google Scholar 

  121. Gutkin, M.Yu., Mikaelyan, K.N., Romanov, A.E., Klimanek, P.: Disclination models of misorientation band generation and propagation. Phys. Status Solidi A 193, 35–52 (2002)

    Google Scholar 

  122. Mikaelyan, K.N., Seefeldt, M., Gutkin, M.Yu., Klimanek, P., Romanov, A.E.: Simulation of the dynamics of a two-dimensional dislocation-disclination ensemble. Phys. Solid State 45, 2104–2109 (2003)

    Google Scholar 

  123. Mukherjee, A.K.: An examination of the constitutive equation for elevated temperature plasticity: Mater. Sci. Eng. A 322, 1–22 (2002)

    Article  Google Scholar 

  124. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials. Acta Mater. 51, 4059–4071 (2003)

    Google Scholar 

  125. Borodin, E.N., Mayer, A.E., Gutkin, M.Yu.: Coupled model for grain rotation, dislocation plasticity and grain boundary sliding in fine-grained solids. Int. J. Plasticity 134, 102776 (2020)

    Google Scholar 

  126. Han, X., Wang, L., Yue, Y., Zhang, Z.: In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Ultramicroscopy 151, 94–100 (2015)

    Article  Google Scholar 

  127. Belyakov, A., Sakai, T., Miura, H., Tsuzaki, K.: Grain refinement in copper under large strain deformation. Phil. Mag. 81, 2629–2643 (2001)

    Article  Google Scholar 

  128. Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang. Y., Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003)

    Google Scholar 

  129. Wu, X.-L., Ma, E.: Dislocations and twins in nanocrystalline Ni after severe plastic deformation: The effects of grain size. Mater. Sci. Eng., A 483–484, 84–86 (2008)

    Article  Google Scholar 

  130. Zhu, Y.T., Liao, X.Z., Wu, X.-L.: Deformation twinning in nanocrystalline materials. Prog. Mater Sci. 57, 1–62 (2012)

    Article  Google Scholar 

  131. Gutkin, M.Yu., Ovid’ko, I.A., Skiba, N.V.: Crack-stimulated generation of deformation twins in nanocrystalline metals and ceramics. Phil. Mag. 88, 1137–1151 (2008)

    Google Scholar 

  132. Ovid’ko, I.A., Skiba, N.V.: Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials. Int. J. Plast 62, 50–71 (2014)

    Article  Google Scholar 

  133. Ovid’ko, I.A., Skiba, N.V.: Nanotwins induced by grain boundary deformation processes in nanomaterials. Scripta Mater. 71, 33–36 (2014)

    Article  Google Scholar 

  134. Rupert, T.J., Gianola, D.S., Gan, Y., Hemker, K.J.: Experimental observations of stress-driven grain boundary migration. Science 326, 1686–1690 (2009)

    Article  Google Scholar 

  135. Gutkin, M.Yu., Mikaelyan, K.N., Ovid’ko, I.A.: Grain growth and collective migration of grain boundaries under plastic deformation of nanocrystalline materials. Phys. Solid State 50, 1216–1229 (2008)

    Google Scholar 

  136. Gutkin, M.Yu., Ovid’ko, I.A.: Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl. Phys. Lett. 87, 251916 (2005)

    Google Scholar 

  137. Sansoz, F., Dupont, V.: Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl. Phys. Lett. 89, 111901 (2006)

    Google Scholar 

  138. Gutkin, M.Yu., Mikaelyan, K.N., Ovid’ko, I.A.: Athermal grain growth through cooperative migration of grain boundaries in deformed nanomaterials. Scripta Mater. 58, 850–853 (2008)

    Google Scholar 

  139. Dynkin, N.K., Gutkin, M.Yu.: Migration of grain boundaries in free-standing nanocrystalline thin films. Scripta Mater. 66, 73–75 (2012)

    Google Scholar 

  140. Gutkin, M.Yu., Dynkin, N.K.: Dislocation-disclination models of grain boundary migration in ultra-thin nanocrystalline films. Phys. Solid State 54, 798–807 (2012)

    Google Scholar 

  141. Bobylev, S.V., Ovid’ko, I.A.: Nanograin nucleation initiated by intergrain sliding and/or lattice slip in nanomaterials. Appl. Phys. Lett. 92, 081914 (2008)

    Google Scholar 

  142. Bobylev, S.V., Ovid’ko, I.A.: Nanograin nucleation through splitting and migration of grain boundaries in deformed nanomaterials. Rev. Adv. Mater. Sci. 17, 76–89 (2008)

    Google Scholar 

  143. Ovid’ko, I.A., Skiba, N.V., Mukherjee, A.K.: Nucleation of nanograins near cracks in nanocrystalline materials. Scripta Mater. 62, 387–390 (2010)

    Article  Google Scholar 

  144. Morozov, N.F., Ovid’ko, I.A., Skiba, N.V.: Stress-driven formation of nanograin chains in nanocrystalline and ultrafine-grained materials. Rev. Adv. Mater. Sci. 29, 180–186 (2011)

    Google Scholar 

  145. Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentien, J.-L., Hytch, M.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310–311 (2003)

    Article  Google Scholar 

  146. Bobylev, S.V., Ovid’ko, I.A.: Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater. 88, 260–270 (2015)

    Article  Google Scholar 

  147. Bobylev, S.V., Ovid’ko, I.A.: On minimum grain size in ultrafine-grained materials and Gum-metals processed by severe plastic deformation. Mater. Phys. Mech. 29, 17–23 (2016)

    Google Scholar 

  148. Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A., Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Ann. Rev. Mater. Res. 40, 319–343 (2010)

    Article  Google Scholar 

  149. Estrin, Y., Vinogradov, A.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013)

    Article  Google Scholar 

  150. Dalla Torre, F., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., Pereloma, E.V.: Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819–4832 (2004)

    Google Scholar 

  151. Zhang, H.W., Huang, X., Hansen, N.: Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultrahigh strains. Acta Mater. 56, 5451–5465 (2008)

    Article  Google Scholar 

  152. Schafler, E., Pippan, R.: Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel. Mater. Sci. Eng., A 387–389, 799–804 (2004)

    Article  Google Scholar 

  153. Ovid’ko, I.A., Sheinerman, A.G.: Triple junction nanocracks in deformed nanocrystalline materials. Acta Mater. 52, 1201–1209 (2004)

    Article  Google Scholar 

  154. Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387–405 (2003)

    Article  Google Scholar 

  155. Ovid’ko, I.A., Sheinerman, A.G.: Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation. Acta Mater. 53, 1347–1359 (2005)

    Article  Google Scholar 

  156. Ovid’ko, I.A., Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007)

    Google Scholar 

  157. Ovid’ko, I.A., Sheinerman, A.G.: Generation of disclination dipoles and nanoscopic cracks in deformed nanoceramic materials. Phys. Solid State 50, 1044–1049 (2008)

    Article  Google Scholar 

  158. Ovid’ko, I.A., Skiba, N.V., Sheinerman, A.G.: Influence of grain boundary sliding on cracking resistance of nanocrystalline ceramics. Phys. Solid State 50, 1261–1265 (2008)

    Article  Google Scholar 

  159. Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater. 56, 2718–2727 (2008)

    Article  Google Scholar 

  160. Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of grain boundary migration on the fracture toughness of nanocrystalline materials. Mater. Phys. Mech. 8, 155–164 (2009)

    Google Scholar 

  161. Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58, 1088–1099 (2010)

    Article  Google Scholar 

  162. Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023–5031 (2011)

    Article  Google Scholar 

  163. Ovid’ko, I.A., Sheinerman, A.G.: Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater. 60, 627–30 (2009)

    Article  Google Scholar 

  164. Ovid’ko, I.A., Sheinerman, A.G.: Ductile vs brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286–5294 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobylev, S.V., Gutkin, M.Y., Sheinerman, A.G., Skiba, N.V. (2022). Micromechanics of Strength and Plasticity in Nanostructured Materials. In: Polyanskiy, V.A., K. Belyaev, A. (eds) Mechanics and Control of Solids and Structures. Advanced Structured Materials, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-030-93076-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93076-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93075-2

  • Online ISBN: 978-3-030-93076-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics