Skip to main content
Log in

Initial kinetics of microwave sintering of copper

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Model experiments for the initial stage of microwave sintering have revealed volume diffusion that can be accompanied by evaporation–condensation and surface diffusion. The volume diffusion is also confirmed by closer distances between the particles. The experimental data show that the mass transfer is intensified during microwave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Agrawal, “Microwave sintering of ceramics, composites, metals, and transparent мaterials,” J. Mat. Ed., 19, No. 4–6, 49–58 (1999).

    Google Scholar 

  2. J. G. Fisher, K. Bai, S. K Woo, et al., “Microwave heated reaction-bonded silicon nitride using an inverse temperature gradient,” Met. Mat. Int., 9, No. 2, 187–191 (2003).

    Article  CAS  Google Scholar 

  3. J. Katz, “Microwave sintering of ceramics,” Annu. Rev. Mater. Sci., 22, 153–70 (1992).

    Article  CAS  ADS  Google Scholar 

  4. P. Yadojib, R. Peelamedua, D. Agrawal, et al., “Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering,” Mat. Sci. Eng. B, 98, 269–278 (2003).

    Article  Google Scholar 

  5. S. S. Panda, V. Singh, A. Upadhyaya, et al., “Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces,” Scr. Mat., 54, 2179–2183 (2006).

    Article  CAS  Google Scholar 

  6. R. Roy, D. Agrawal, J. Cheng, et al., “Full sintering of powdered-metal bodies in a microwave field,” Nature, 339, 668–670 (1999).

    ADS  Google Scholar 

  7. J. Cheng, R. Roy, and D. Agrawal, “Radically different effects on materials by separated microwave electric and magnetic fields,” Mat. Res. Innovat., 5, No. 3-4, 170–170 (2002).

    Article  CAS  Google Scholar 

  8. J. Ma, J. F. Diehl, E. J. Johnson, et al., “Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts,” J. Appl. Phys., 101, 1–8 (2007).

    Google Scholar 

  9. D. E. Clark, D. C. Folz, and J. K West, “Processing materials with microwave energy,” Mat. Sci. Eng. A, 287, 153–158 (2000).

    Article  Google Scholar 

  10. E. Pert, Y. Carmel, A. Birnboim, et al., “Temperature measurements during microwave processing: the significance of thermocouple effects,” J. Am. Ceram. Soc., 84, 1981–1986 (2001).

    Article  CAS  Google Scholar 

  11. G. C. Kuczynski, “Self-diffusion in sintering of metallic particles,” Metall. Trans. AIME, 185, 169–178 (1949).

    Google Scholar 

  12. Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984), p. 312.

    Google Scholar 

  13. A. M. Gokhale, M. Basavaiah, G. S. Upadhyaya, et al. “Kinetics of neck growth during loose stack sintering,” Met. Mat. Trans. A, 19, No. 9, 2153–2161 (1988).

    Article  Google Scholar 

  14. W. D. Kingery and M. Berg, “Study of initial stages of sintering solids by viscous flow, evaporationcondensation, and self-diffusion,” J. Appl. Phys., 26, No. 10, 1205–1212 (1955).

    Article  CAS  ADS  Google Scholar 

  15. T. L. Wilson and P. G. Shewmon, “The role of interfacial diffusion in the sintering of copper,” Metall. Trans. AIME, 236, 48–58 (1966).

    CAS  Google Scholar 

  16. G. J. R. Rockland, “The determination of the mechanism of sintering,” Acta Met., 15, 277–286 (1967).

    Article  CAS  Google Scholar 

  17. K.-S. Hwang, R. M. German, and F. V. Lenel, “Analysis of initial stage sintering through computer simulation,” Powder Met. Int., 23, 86–91 (1991).

    CAS  Google Scholar 

  18. K. Saitou, “Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders,” Scripta Mat., 54, 875–879 (2006).

    Article  CAS  Google Scholar 

  19. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials,” J. Phys. D: Appl. Phys., 34, R55–R75 (2001).

    Article  CAS  ADS  Google Scholar 

  20. R. Roy, P. D. Peelamedu, L. Hurtt, et al., “Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds,” Mat. Res. Innovat., 6, 128–140 (2002).

    Article  CAS  Google Scholar 

  21. D. Demirskyi, D. Agrawal, and A. Ragulya, “Neck formation between copper spherical particles under single-mode and multimode microwave sintering,” Mat. Sci. Eng: A, A527, 2142–2145 (2010).

    Article  CAS  Google Scholar 

  22. N. Yoshikawa, E. Ishizuka, and K. Mashiko, “Carbon reduction kinetics of NiO by microwave heating of the separated electric and magnetic fields,” Met. Mat. Trans. B, 38, 863–868 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ragulya.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 3–4 (472), pp. 30–37, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirskii, D.N., Ragulya, A.V. Initial kinetics of microwave sintering of copper. Powder Metall Met Ceram 49, 147–152 (2010). https://doi.org/10.1007/s11106-010-9214-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9214-8

Keywords

Navigation