Skip to main content
Log in

Phase equilibria and thermodynamics of binary copper systems with 3d-metals. IV. Copper-manganese system

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Thermodynamic properties of alloys and phase diagram of Cu-Mn system have been assessed in the spirit of the CALPHAD-approach using simultaneously data about thermodynamic properties of phases and their equilibria. Thermodynamic data are known only for liquid and (Cu, γMn)-phase, model parameters for (δMn)-and (βMn)-phases were therefore estimated using phase equilibria data. The excess Gibbs free energy of phases is described by models with Redlich-Kister polynomials. The models of Gibbs free energy of liquid and (Cu, γMn)-phase take into account excess heat capacity of these phases. Thermodynamic model of the system provides a self-consistent description of all thermodynamic values and phase equilibria, including metastable immiscibility of (Cu, γMn)-phase in close agreement with experimental data. Low-temperature part of the diagram is added in accordance with published data on ordering reactions in (Cu, γMn)-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Byalik, V. S. Chernenko, V. M. Pisarenko, and Yu. N. Moskalenko, Metallurgy: Textbook, in 2 Vols., reprinted and amended [in Ukrainian], Politekhnika, Kiev (2002).

    Google Scholar 

  2. V. M. Vozdvizhenskii, V. A. Grachev and V. V. Spasskii, Cast Alloys and Their Melting Technology in Engineering: Teaching Textbook for Engineering Schools [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  3. Properties of Elements: Handbook [in Russian], M. E. Drits (ed.), Metallurgiya, Moscow (1985).

    Google Scholar 

  4. P. Gibbs, T. M. Harders, and J. H. Smith, “The magnetic phase diagram of CuMn,” J. Phys. F. Met. Phys., 15, 213–223 (1985).

    Article  CAS  Google Scholar 

  5. E. Z. Vintaikin, D. F. Litvin, and V. A. Udovenko, “Fine crystalline structure in high damping copper-manganese alloys,” Fiz. Metall. Metallovedenie, 37, No. 6, 1228–1237 (1974).

    CAS  Google Scholar 

  6. S. Laddha and D. C. Van Aken, “On the application of magnetomechanical models to explain damping in an antiferromagnetic copper-manganese alloy,” Met. Mater. Trans., 26A, 957–964 (1995).

    CAS  Google Scholar 

  7. K. Sugimoto, T. Mori, and S. Shiode, “Effect of composition on the internal friction and Young’s modulus in γ-phase Mn-Cu alloys,” Metal Sci. J., 7, 103–108 (1973).

    Article  CAS  Google Scholar 

  8. E. Z. Vintaikin and G. I. Nosova, “Reversible shape memory effect in alloys of the Mn-Cu system,” Metall. Term. Obrab. Metallov, No. 9, 34–37 (1996).

  9. K. Tsuchiya, H. Sado, S. Edo, et al., “Effect of ageing on martensitic transformation in gamma-MnCu alloy,” Mater. Sci. Eng., 285A, 353–356 (2000).

    Google Scholar 

  10. R. S. Dean, J. R. Long, T. R. Graham, et al., “The copper-manganese equilibrium system,” Trans. ASM, 34, 443–464 (1945).

    Google Scholar 

  11. N. N. Ivanov-Skoblikov, “Modern state of studying and constructing the phase diagram for the copper-manganese-aluminum system,” Zap. Leningrad. Gorn. Inst., 29, No. 3, 152–180 (1954).

    CAS  Google Scholar 

  12. M. Hansen and K. Anderko, Structure of Binary Alloys, Vol. 2 [Russian translation], Metallurgiya, Moscow (1962).

    Google Scholar 

  13. N. A. Gokcen, “The Cu-Mn (Copper-Manganese) System,” J. Phase Equilib., 14, No. 1, 76–83 (1993).

    CAS  Google Scholar 

  14. N. A. Gokcen, “Cu-Mn (Copper-Manganese),” in: Phase Diagrams of Binary Copper Alloys, ASM International, Ohio, USA (1994).

    Google Scholar 

  15. G. Grube, E. Oestreicher, and O. Winkler, “The copper-manganese system,” Z. Elektrochem., 45, 776–784 (1939).

    CAS  Google Scholar 

  16. A. Hellawell and W. Hume-Rothery, “The constitution of alloys of iron and manganese with transition elements of the first long period,” Philos. Trans. R. Soc. (London), 249A, 417–459 (1957).

    Google Scholar 

  17. E. M. Sokolovskaya, A. T. Grigor’ev, and E. M. Smirnova, “Transformations in the solid state in alloys of the copper-manganese system rich in copper,” Zhurn. Neorg. Khim., 7, No. 11, 2636–2638 (1962).

    CAS  Google Scholar 

  18. E. Schurmann and E. Schultz, “Untersuchengen zum Verlauf der Liquidus und Soliduslinien in den Systemen Kupfer-Mangan und Kupfer-Nickel,” Z. Metallkunde, 62, No. 10, 758–762 (1971).

    Google Scholar 

  19. E. Wachtel. P. Terzieff, and J. Bahle, “Construction and magnetic properties of manganese-rich copper-manganese and manganese-tin alloys,” Monatsch. Chem. 117, No. 12, 1349–1366 (1986).

    Article  CAS  Google Scholar 

  20. T. Gödecke, “Physikalische Messungen an Kupfer-Mangan-Legierungen. III. Einflus der Abschecktemperatur auf den elektrischen Widerstand und die Dilatation der Legierungen,” Z. Metallkunde, 81, 826–835 (1990).

    Google Scholar 

  21. W. Köster and T. Gödecke, “Physikalische Messungen an Kupfer-Mangan-Legierungen. I. Die Ordnungsumwandlungen im Bereich der gamma-Phase des Systems,” Z. Metallkunde, 80, 761–765 (1989).

    Google Scholar 

  22. T. Gödecke and W. Köster, “Physikalische Messungen an Kupfer-Mangan-Legierungen. II. Zustandsäderungen beim Anlassen der von 850°C abgeschreckten Legierungen,” Z. Metallkunde, 80, 766–773 (1989).

    Google Scholar 

  23. J. M. Vitek and H. Warlimont, “On a metastable miscibility gap in gamma-manganese-copper alloys and the origin of their high damping capacity,” Met. Sci., 10, No. 1, 7–13 (1976).

    Article  CAS  Google Scholar 

  24. H. J. Stokes and I. D. Harwin, “The effect of aging on Young’s modulus, electrical resistivity and hardness of 80: 20 manganese-copper alloy,” J. Inst. Met., 89, 77–79 (1960).

    CAS  Google Scholar 

  25. J. H. Smith and E. R Vance, “Decomposition of γ-phase manganese-copper alloys,” J. Appl. Phys, 40, No. 12, 4853–4858 (1969).

    Article  CAS  Google Scholar 

  26. P. A. Beck, “Some recent results on magnetism in alloys,” Met. Trans. 2, 2015–2024 (1971).

    CAS  Google Scholar 

  27. P. A. Beck, “Comments on micromagnetism,” J. Less-Common Met., 28, 193–199 (19872).

    Article  Google Scholar 

  28. D. Chowdhury, T. M. Harders, A. Mookerjee, and P. Gibbs, “Theoretical justification of the magnetic phase diagram of Cu-Mn alloys,” Solid State Comm., 57, No. 2, 603–605 (1986).

    Article  CAS  Google Scholar 

  29. G. E. Bacon, I. W. Dunmur, J. H. Smith, and R. Street, “The antiferromagnetism of manganese-copper alloys,” Proc. Roy. Soc. (London), A, 241, 223–228 (1957).

    Article  CAS  Google Scholar 

  30. J. E. Zimmerman, A. Arrott, H. Sato, and S. Shinozaki, “Antiferromagnetic transition in γ-phase Mn-alloys,” J. Appl. Phys., 35, No. 3, 942–943 (1964).

    Article  CAS  Google Scholar 

  31. G. E. Bacon and N. Cownam, “A study of some alloys of γ-manganese by neutron diffraction,” J. Phys. C. Solid State Phys., 3, No. 3, 675–686 (1970).

    Article  CAS  Google Scholar 

  32. S. Sato and O. J. Kleppa, “Thermochemistry of liquid alloys of transition metals. I. The systems Mn-Cu and Mn-Sn,” Met. Trans., 10B, 63–66 (1979).

    CAS  Google Scholar 

  33. M. A. Turchanin, A. V. Kokhan, and S. V. Porokhnya, “Calorimetric study of thermodynamic properties of manganese-copper alloys,” Rasplavy, No. 3, 17–19 (1994).

  34. M. A. Turchanin and I. V. Nikolaenko, “Enthalpies of formation of liquid (cooper + manganese) alloys,” Met. Mater. Trans., 28B, No. 3, 473–478 (1997).

    CAS  Google Scholar 

  35. P. J. Spencer and J. N. Pratt, “Thermodynamic study of liquid manganese-copper alloys,” Trans. Faraday Soc., 64, No. 6, 1470–1476 (1968).

    Article  CAS  Google Scholar 

  36. K. Okajima and H. Sakao, “Activity measurements of the binary Mn-base alloys by the TIE method,” Trans. J. Inst. Met., 16, No. 2, 87–93 (1975).

    CAS  Google Scholar 

  37. J. Vrest’al, J. Stepankova, and P. Broz, “Thermodynamics of manganese-copper system. Knudsen-cell spectrometric study of the liquid Cu-Mn system and calculation of the phase diagram,” Scand. J. Met., 25, No. 5, 224–231 (1996).

    CAS  Google Scholar 

  38. J. N. Pratt and A. W. Bryant, “Thermodynamics of alloys. Calorimetric studies of maganese-copper and palladium-aluminum alloys,” US Clearing House Fed. Sci. Techn. Inform., No. 705, 644 (1969).

  39. G. V. Evseeva and A. M. Evseev, “Thermodynamic properties of alloys of the manganese-copper system,” Zhurn. Fiz. Khim., 37, No. 6, 1411–1412 (1963).

    CAS  Google Scholar 

  40. B. F. Peters and D. R. Wiles, “A vapor study of the alloys of manganese with copper,” Canad. J. Chem., 41, No. 10, 2591–2599 (1963).

    Article  CAS  Google Scholar 

  41. R. W. Krenzer and M. J. Pool, “Thermodynamic properties of copper-manganese alloys,” Trans. Met. Soc. AIME, 245, 91–98 (1969).

    CAS  Google Scholar 

  42. V. N. Eremenko, G. M. Lukashenko, and V. R. Sidorko, “Thermodynamic properties of alloys of manganese with transition elements of the fourth period (Cr, Fe, Co, Ni) and with copper,” Russ. J. Phys. Chem., 42, 343–346 (1968).

    Google Scholar 

  43. A. F. Alabyshev, M. V. Kamenetskii, M. V. Morachevskii, and V. A. Petrov, “Study of thermodynamic properties of the manganese-copper system by an emf method,” Elektrokhimiya, 6, No. 11, 1709–1710 (1970).

    CAS  Google Scholar 

  44. J. P. Hajra, “Thermodynamics of copper-manganese alloys,” Scr. Met., 13, No. 3, 173–175 (1979).

    Article  CAS  Google Scholar 

  45. K. Lewin, D. Sichen, and S. Seetharaman, “Thermodynamic study of the Cu-Mn system,” Scand. J. Met., 22, No. 6, 310–316 (1993).

    CAS  Google Scholar 

  46. E. Scheil and W. Normann, “Investigation of the short-range order formation in a copper-manganese alloy with an adiabatic high-temperature calorimeter,” Z. Metallkunde, 51, 165–171 (1960).

    CAS  Google Scholar 

  47. B. F. Naylor, “Heat contents above 25°C of seven manganese-copper alloys,” Bur. Mines RI, 3835–3848 (1946).

  48. K. Hirano, H. Maniva, and Y. Takagi, “Specific heat of antiferromagnetic phase in Mn-rich Cu-Mn binary alloys,” Acta Met., 6, 64 (1958).

    Article  Google Scholar 

  49. L. Kaufman, “Coupled phase diagrams and thermochemical data for transition metal binary systems — III,” CALPHAD, 2, No. 2, 117–146 (1978).

    Article  CAS  Google Scholar 

  50. D. T. Hawkins and R. Hultgren, Metals Handbook, Vol. 8, ASM, Metals Park, Ohio (1973).

    Google Scholar 

  51. R. Hultgren, et al., Selected Values of the Thermodynamic Properties of Binary Alloys, ASM International, Metals Park, Ohio (1973).

    Google Scholar 

  52. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 317 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 11–12(452), pp. 72–86, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchanin, M.A., Agraval, P.G. & Abdulov, A.R. Phase equilibria and thermodynamics of binary copper systems with 3d-metals. IV. Copper-manganese system. Powder Metall Met Ceram 45, 569–581 (2006). https://doi.org/10.1007/s11106-006-0121-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-006-0121-y

Keywords

Navigation