Skip to main content
Log in

The Overexpression of Solanum nigrum Osmotin (SnOLP) Boosts Drought Response Pathways in Soybean

  • RESEARCH
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Environmental stresses are responsible for limiting soybean yield. To mitigate the impacts generated by water deficit, molecular biology tools are being used to develop genetically modified plants. Previous studies showed that two independent events (B1 and B3) of soybean transgenic plants expressing a Solanum nigrum osmotin (SnOLP) had an increment in drought tolerance. The present study aims to investigate the modulated pathways that results in the drought tolerance promoted by osmotin overexpression in soybean. Transgenic and non-transgenic (NT) plants in the vegetative stage were submitted to water deficit by irrigation suppression for seven days. Control plants were kept irrigated. Physiological variables were monitored and confirmed that the transgenic plants present better performance when compared to the NT plants. The total RNA extracted from leaves was sequenced and data was normalized by DESeq2. A total of 2044 and 1505 differentially expressed genes (DEGs) were identified in B1 and B3 events, respectively. Regarding the B1 event, 769 genes were upregulated and 1275 downregulated. For B3, 541 genes were upregulated and 964 genes were downregulated. Excluding common differentially expressed genes (DEGs) between transgenic and non-transgenic (NT) plants yielded 395 upregulated and 234 downregulated genes, which were shared by B1 and B3 events. The metabolic pathways and gene ontology categories identified are known to be involved in plant responses to drought. Hormonal, photosynthetic, carbohydrate and amino acid metabolism, reactive oxygen species, and post-translational modifications pathways were significantly modulated in transgenic plants. Altogether, the results suggest that osmotin promotes tolerance through an increment in the plant responses elicited by drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  • Al-Abed D, Madasamy P, Talla R, Goldmana S, Rudrabhatla S (2007) Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 geneusing splitseed explants. Crop Sci 47:2309–2402

    Article  Google Scholar 

  • Alexa A, Rahnenführer J (2009) Gene set enrichment analysis with topGO. Bioconductor Improv 27:1–26

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Arraes FBM, Beneventi A, De Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, GrossI-De-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15(1):213

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Barthakur S, Babu V, Bansal KC (2001) Overexpression of osmotin induces proline accumulation and confers drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Google Scholar 

  • Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB (2014) Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 15(1):950

    Article  PubMed  PubMed Central  Google Scholar 

  • Borah P, Sharma E, Kaur A, Chandel G, Mohapatra T, Kapoor S, Khurana JP (2017) Analysisof drought-responsive signalling network in two contrasting rice cultivarsusing transcriptome-based approach. Sci Rep 7:42131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaliha C, Rugen MD, Field RA, Kalita E (2018) Glycans as Modulators of Plant Defense Against Filamentous Pathogens. Front Plant Sci 4(9):928

    Article  Google Scholar 

  • Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, Qiu DZ, Yang ZL, Chen AL (2013) Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics 14(1):687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front Plant Sci 7:1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ding Y, Song C, Yang Y, Wang B, Yang S, Guo Y, Gong Z (2021) Protein kinases in plantresponses to drought, salt, and cold stress. J Integr Plant Biol 63:53–78

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • CONAB (2022) Compania Nacional de Abastecimento, Acompanhamento da Safra Brasileira de Grãos, Safra 2016/17, available at: www.conab.gov.br

  • Contiliani DF, Nebó JFCO, Ribeiro RV, Andrade LM, Peixoto Junior RF, Lembke CG, Machado RS, Silva DN, Belloti M, Souza GM, Perecin D, Pereira TC, Pires RCM, Fontoura PR, Landell MGA, Figueira A, Creste S (2022) Leaf transcriptome profiling of contrasting sugarcane genotypes for drought tolerance under field conditions. Sci Rep 12:9153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM (2015) The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of aquilaria crassna. Molecules 20(7):11808–11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darzi Y, Letunic I, Bork P, Yamada T (2018) iPath3. 0: interactive pathways explorer v3. Nucleic Acids Res 46(W1):W510–W513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20(2):231–246

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira-Busatto LA, Giordano C, da Silva MF, Uhry D, Guzman F, Li Z, Wiebke-Strohm B, Bredemeier C, Bodanese-Zanettini MH (2022) Identification of functional genetic variations underlying flooding tolerance in Brazilian soybean genotypes. Int J Mol Sci 23(18):10611

    Article  Google Scholar 

  • Dong S, Beckles DM (2019) Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal Plant Physiology 234–235:80–93

    Article  Google Scholar 

  • Dou H, Xv K, Meng Q, Li G, Yang X (2015) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant, Cell Environ 38:61–72

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochemical Bulletin 19:11–15

    Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang H, Wu J, Xie F (2020) Effect of drought stress during soybean R2–R6 growth stages on sucrose metabolism in leaf and seed. Int J Mol Sci 21(2):618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fàbregas N, Fernie AR (2019) The metabolic response to drought. J Exp Bot 70(4):1077–1085

    Article  PubMed  Google Scholar 

  • Faillace GR, Turchetto-Zolet AC, Guzman FL, de Oliveira-Busatto LA, Bodanese-Zanettini MH (2019) Genome-wide analysis and evolution of plant thaumatin-like proteins: a focus on the origin and diversification of osmotins. Mol Genet Gen 294(5):1137–1157. https://doi.org/10.1007/s00438-019-01554-y. Epub 2019 Apr 27. PMID: 31030277

    Article  CAS  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta (BBA) 990(1):87–92

    Article  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum l.). Protoplasma 245:133–141

    Article  CAS  PubMed  Google Scholar 

  • Guedes RLM, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HAL, Ortega JM (2011) Amino acids biosynthesis and nitrogen assimilation pathways: a great genomic deletion during eukaryotes evolution. BMC Genomics 12(4):1

    Google Scholar 

  • Hakim AU, Amjad H, Muhammad S, Aamir HK, Muna A, Summia G, Zhang J, Sun L, Jianying Li, Shuangxia J, Muhammad FHM (2018) Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiol Biochem 123:149–159

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U (2016) Starch turnover and metabolism during flower and early embryo development. Plant Physiol 172(4):2388–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopi-cally expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70:375–387

    Article  CAS  PubMed  Google Scholar 

  • Itam M, Mega R, Tadano S, Abdelrahman M, Matsunaga S, Yamasaki Y, Akashi K, Tsujimoto H (2020) Metabolic and physiological responses to progressive drought stress in bread wheat. Sci Rep 10:17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K (2006) Functional analysis of riceDREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze WX, Walther D, Rakwal R (2009) Plant phosphoproteomics: an update. Proteomics 9(4):964–988

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):1

    Article  Google Scholar 

  • Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, Katam R, Sivan P, Rao KS, Kirti PB, Kishor PK (2016) Beyond just being foot soldiers–osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environ Exp Bot 132:53–65

    Article  CAS  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Tran LSP (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7(11):e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GL, Wu HX, Sun YQ, Zhang SY (2013) Response of Chlorophyll Fluorescence Parameters to Drought Stress in Sugar Beet Seedlings. Russ J Plant Physiol 60(3):337–342

    Article  CAS  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10):e108

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu RM, Li FL, Hu GF, Hu BZ (2011) Cold resistance of transgenic tobacco with CBF3 gene. J Northeast Agric Univ 42:119–123

    CAS  Google Scholar 

  • Liu S, Zenda T, Dong A, Yang Y, Wang N, Duan H (2021) Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific drought stress responses in maize. Front Genet 12:645443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  • Manavella PA, Dezar CA, Ariel FD, Drincovich MF, Chan RL (2008) The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. J Exp Bot 59(11):3143–3155

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan R, Wang G, Li M, Roth M, Welti R, Wang X (2013) Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation. Phytochemistry 96:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol 164(4):1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Busatto LA, Almeida RMC, Weber RLM, Favero D, Bredemeier C, Giordano CPS, Bodanese Zanettini MH (2021) The soybean transcriptogram allows a wide genome-to-single-gene analysis that evinces time-dependent drought response. Plant Mol Biol Report 40:1–27

    Article  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LM, Singh NK, Rathore KS (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23(4):625–639

    Article  CAS  Google Scholar 

  • Porres-Martínez M, González-Burgos E, Carretero ME, Gómez-Serranillos MP (2016) In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Zeitschrift Für Naturforschung C 71(7–8):191–199

    Article  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–202

    Article  CAS  Google Scholar 

  • Reis RR, Mertz-Henning LM, Marcolino-Gomes J, Rodrigues FA, Rockenbach-Marin S, Fuganti-Pagliarini R, Koltun A, Goncalves LSA, Nepomuceno AL (2020) Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles. Genet Mol Biol 43(2):e20180290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribichich KF, Chiozza M, Ávalos-Britez S, Cabello JV, Arce AL, Watson G, Arias C, Portapila M, Trucco F, Otegui ME, Chan RL (2020) Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. J Exp Bot 71(10):3142–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Lobo FP, Harmon FG, Nepomuceno AL (2015) Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genomics 16(1):505

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvador V, Pagan M, Cooper M, Kantartzi SK, Lightfoot DA, Meksem K, Kassem MA (2012) Genetic analysis of relative water content (RWC) in two recombinant inbred line populations of soybean [Glycine max (l.) merr.].J. Plant Genome Science 1:46–53

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg

  • Shin JH, Vaughn JN, Abdel-Haleem H, Chavarro C, Abernathy B, Kim KD, Jackson SA, Li Z (2015) Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biol 15(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AM (1999) Making starch. Curr Opin Plant Biol 2(3):223–229

    Article  CAS  PubMed  Google Scholar 

  • Tang LY, Nagata N, Matsushima R, Chen YL, Yoshioka Y, Sakamoto W (2009) Visualization of Plastids in pollen grains: involvement of FtsZ1in pollen plastid division. Plant Cell Physiology 50(4):904–908

    Article  CAS  PubMed  Google Scholar 

  • Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  CAS  PubMed  Google Scholar 

  • Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214(3):943–951

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Qingxi JS, Morandi D, Bücking H, Shulaev V, Rushton PJ (2016) A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics 17(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–9

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo H, Wu X, Wang J, Li H, Zhang R (2022) Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Front Plant Sci 3(13):928897

    Article  Google Scholar 

  • Wang L, Liu L, Ma Y, Li S, Dong S, Zu W (2018a) Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput Biol Chem 77:413–429

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK (2018b) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69:100–112.e106

    Article  CAS  PubMed  Google Scholar 

  • Weber RLM, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, Brito GG, Rechenmacher C, Bertagnolli PF, Sá MEL, Campos MA, Amorim RMS, Beneventi MA, Margis R, Grossi-De-Se MF, Bodanese-Zanettini MH (2014) Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. BMC Plant Biol 14:343–352

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Gloria C, Johnson JJ, Marritt K, Kataya A, Vahab A, Moorhead GB (2018) Protein kinases and phosphatases of the plastid and their potential role in starch metabolism. FrontPlant Sci 9:1032

    Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell S165–S183

  • Xu C, Xia C, Xia Z, Zhou X, Huang J, Huang Z, Liu Y, Jiang Y, Casteel S, Zhang C (2018) Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Rep 37:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Ninkuu V, Fu Z, Yang T, Ren J, Li G, Yang X, Zeng H (2023) OsOLP1 contributes to drought tolerance in rice by regulating ABA biosynthesis and lignin accumulation. Front Plant Sci 14:1163939

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, Zhou R, Yu J, Zhang Y, Wang L, Zhang X (2019) Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol 19:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Song B (2017) RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines). Genomic data 14:36–39

    Article  Google Scholar 

  • Zhang J, Liu J, Yang C, Du S, Yang W (2016) Photosynthetic performance of soybean plants to water deficit under high and low light intensity of botany. S Afr J Bot 105:279–287

    Article  CAS  Google Scholar 

  • Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 109:290–308

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhuang L, Liu Y, Yang Z, Huang B (2020) Protein phosphorylation associated with drought priming-enhanced heat tolerance in a temperate grass species. Hortic Res 7:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Diao S, Ding X, Sun J, Luan Q, Jiang J (2023) Transcriptional regulation modulates terpenoid biosynthesis of Pinus elliottii under drought stress. Ind Crops Prod 202:116975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by MCTI/CNPq/CAPES/FAPs no. 16/2014-National Institute of Science and Technology (INCT) in Biotech Assets Applied to Drought and Pests of Relevant Crops to Agrobusiness [88887.136360/2017-00-465480/2014-4].

Funding

This work was supported by MCTI/CNPq/CAPES/FAPs no. 16/2014-National Institute of Science and Technology (INCT) in Biotech Assets Applied to Drought and Pests of Relevant Crops to Agrobusiness, [88887.136360/2017-00-465480/2014-4].

Author information

Authors and Affiliations

Authors

Contributions

LAOB, LF, CB and MHBZ conceived the study; MHBZ acquired funding and resources for the study, Data analysis done by LAOB, LF, FL, FG, GRF, DF; LAOB, LF, FL, RLMW, CB and MHBZ interpreted the results; and LAOB, FL, MHBZ wrote the manuscript.

Corresponding author

Correspondence to Maria Helena Bodanese Zanettini.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

• Soybean overexpressing SnOLP performed better under drought

• SnOLP expression helps plants to retain water and to increase photosynthetic capacity under drought stress

• Gene ontology (GO) analysis identified enriched terms associated with various biological processes, notably including responses to hydrogen peroxide, salt stress, and protein folding among upregulated genes, and borate transmembrane transport and photosynthetic electron transport among downregulated genes

• Shared DEGs between B1 and B3 transgenic events were annotated for 56 metabolic pathways, encompassing various aspects of plant metabolism and stress response

• Hormonal, photosynthetic, carbohydrate and amino acid metabolism, reactive oxygen species, and post-translational modifications pathways were significantly modulated in transgenic plants

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Busatto, L.A., Frâncio, L., Lazzarotto, F. et al. The Overexpression of Solanum nigrum Osmotin (SnOLP) Boosts Drought Response Pathways in Soybean. Plant Mol Biol Rep (2024). https://doi.org/10.1007/s11105-024-01452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11105-024-01452-7

Keywords

Navigation