Skip to main content
Log in

Characterization of Small RNAs and Their Targets from Fusarium oxysporum Infected and Noninfected Cotton Root Tissues

  • Brief Communication
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Genes for host-plant resistant do exist in cotton (Gossypium spp.) but improvement of cotton cultivars with resistance is difficult due to intensive breeding. Identifying molecular-genetic mechanisms associated with disease resistance can offer a new way to combat a serious threat such as Fusarium oxysporum f. sp. vasinfectum (FOV). Here, we captured and annotated “top-layer” of abundantly and specifically expressed cotton root small RNA (sRNA) including microRNA (miR) sequences during FOV pathogenesis using size-directed and adenylated linker-based sRNA cloning strategy. A total of 4116 candidate sRNA sequences with 16 to 30 nucleotide (nt) length were identified from four complementary DNA (cDNA) libraries of noninfected and FOV race 3-infected roots of susceptible (“11970”) versus resistant (“Mebane B-1”) cotton genotypes (G. hirsutum L.). The highest numbers of sRNA signatures were those with 19–24 nt long in all libraries, and interestingly, the number of sRNAs substantially increased during FOV infection in a resistant genotype, while it sharply decreased in a susceptible genotype. In BLAST analysis, more than 73 % of sRNAs matched Gossypium (G. arboretum L., G. hirsutum, and G. barbadense L.) ESTs. A small percentage of sRNAs matched A. thaliana (1.68 %), T. cacao (1.26 %), fungal (2 %), and other organism (21.33 %) ESTs. mirBase comparisons showed that 4 % of sRNAs were homologous to previously reported plant miRs, among which we predicted novel cotton Ghr-miR-160 that was not registered in the cotton miR database. These major representative sRNA signatures targeted proteins associated with the key biological processes and molecular functions, explaining the molecular mechanisms of the host defense response during the FOV pathogenesis in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang L, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A (2008) Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol 8:93. doi:10.1186/1471-2229-8-93

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Dao TT, Linthorst HJ, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY (2009) Methodologies for in vitro cloning of small RNAs and application for plant genome(s). Int J Plant Genomics. doi:10.1155/2009/915061

    PubMed  PubMed Central  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  CAS  PubMed  Google Scholar 

  • Egamberdiev SS, Ulloa M, Saha S, Salakhutdinov IB, Abdullaev A, Glukhova LA, Adylova AT, Scheffler BE, Jenkins JN, Abdurakhmonov IY (2013) Molecular characterization of Uzbekistan isolates of Fusarium oxysporum f. sp. Vasinfectum. J Plant Sci Mol Breed. doi:10.7243/2050-2389-2-3

    Google Scholar 

  • Ellendorff U, Fradin EF, de Jonge R, Thomma BPHJ (2009) RNA silencing is required for Arabidopsis defense against Verticillium wilt disease. J Exp Bot 60:591–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miR genes. PLoS One 2, e219

    Article  PubMed  PubMed Central  Google Scholar 

  • He X-F, Fang Y-Y, Feng L, Guo H-S (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miR in Brassica. FEBS Lett 582:2445–2452

    Article  CAS  PubMed  Google Scholar 

  • Hongyan X, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12:178

    Article  Google Scholar 

  • Hozain M, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS (2012) Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol 169:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2011) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA Gene Regul Mech 2:137–148

    Google Scholar 

  • Kim Y, Davis RM, Hutmacher RB (2005) Characterization of California isolates of Fusarium oxysporum f. sp. Vasinfectum. Plant Dis 89:366–372

    Article  CAS  Google Scholar 

  • Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 10:457. doi:10.1186/1471-2164-10-457

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Anbros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:543–854

    Article  Google Scholar 

  • Li Y, Zhang QQ, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Deng G, Yang J, Viljoen A, Jin Y, Kuang R, Zuo C, Lv Z, Yang Q, Sheng O, Wei Y, Hu C, Dong T, Yi G (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2010) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    Article  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S37

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al (2006) A plant miR contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effectors proteins. Science 321:964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, Hutmacher RB, Davis RM, Wright SD, Percy R, Marsh B (2006) Breeding for Fusarium wilt race 4 resistance in cotton under field and greenhouse conditions. J Cotton Sci 10:114–127

    Google Scholar 

  • Ulloa M, Wang C, Hutmacher RB, Wright SD, Davis RM, Saski CA, Roberts PA (2011) Mapping Fusarium wilt race 1 resistance genes in cotton by inheritance, QTL, and sequencing composition. Mol Genet Genomics 286:21–36

    Article  CAS  PubMed  Google Scholar 

  • Ulloa M, Hutmacher RB, Roberts PA, Wright SD, Nichols RL, Davis RM (2013) Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor Appl Genet 126:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8:301–307

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Llewellyn DJ, Dennis ES (2002) A quick and easy method for isolating good-quality RNA from Cotton (G.hirsutum L.) tissues. Plant Mol Biol Report 20:213–218

    Article  CAS  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One 7(4), e35765. doi:10.1371/journal.pone.0035765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–6

    Article  CAS  PubMed  Google Scholar 

  • Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong X (2015) Spatialand temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci U S A 112:9166–9173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was funded by the Office of International Research Programs (OIRP) of the United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) in the frame of USDA-ARS—Former Soviet Union (FSU) cooperation programs with the research grant of UZB2-31016-TA-09. We acknowledge the Academy of sciences of Uzbekistan and US Civilian Research & Development Foundation (CRDF) for project coordination. Mention of trade names or commercial products in this article is solely for providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The US Department of Agriculture is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Y. Abdurakhmonov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

sRNA isolation experimental procedure (A-D) and an example of concatemerazed sRNAs sequencing (E) chromatography: (A) - 15 % denaturing PAG electrophoresis of total RNAs isolated from infected (1, 2) and non-infected tissues (3, 4), (a)- mRNA/rRNA/tRNA fraction, (b)-small RNA fraction, M – low molecular weight molecular marker of 10 nt; (B) - 15 % denaturing PAG electrophoresis for 3′ linkering reaction where upper arrow shows 3′linkered product, while lower arrow shows a unlinkered small RNAs, (S) - 21 nt spike RNA; (C) 2 % agarose gel of RT-PCR after 5 and 3′ linkering reactions, (M)-50 bp DNA ladder; and (D) 2 % agarose gel for the colony PCR of concatemerazed sRNA products that were sub-cloned into TOPO-TA vector where (N) - negative PCR (from empty vector) amplification, (P) - positive clones, and (M)-50 bp DNA ladder. (PDF 751 kb)

Supplementary Fig. S2

GO analysis for biological process (upper) and molecular function (lower) on sRNAs targeted genes (%) from four libraries. (PPT 743 kb)

Supplementary Table S1

Detailed list of sRNAs cloned from FOV infected vs. non-infected cotton tissues and BLAST analysis results. (XLS 277 kb)

Supplementary Table S2

Target identification of sRNAs cloned from FOV infected vs. non-infected cotton tissues. (XLS 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapulatov, U.M., Buriev, Z.T., Ulloa, M. et al. Characterization of Small RNAs and Their Targets from Fusarium oxysporum Infected and Noninfected Cotton Root Tissues. Plant Mol Biol Rep 34, 698–706 (2016). https://doi.org/10.1007/s11105-015-0945-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0945-z

Keywords

Navigation