Skip to main content
Log in

Enhancement of Cytochrome b 559 Indicates Its Possible Involvement in Long-Term High Light Stress Tolerance in Intertidal Macroalgae

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The effects of high light (HL) stress on the photosynthetic proteins of green tide-forming macroalga were studied. The naturally grown Ulva prolifera was collected from an intertidal habitat and subjected to 1000 μE m−2 s−1 HL for 12 h. The thylakoid membrane proteins were subsequently extracted and qualitatively analyzed using LC/MS. Quantitative analysis of the thylakoid membrane proteins showed that both PSII reaction center proteins and PSII chlorophyll antenna proteins were decreased. Comparatively, the main PSI reaction center proteins were well preserved. The cytochrome f subunit was significantly decreased, while the other subunits of cytochrome b 6 /f complex were maintained. These results demonstrated that the HL-induced cytochrome b 559 might play a role in photoacclimation of U. prolifera by involving in cyclic photosynthetic electron transfer (PET) flow around PSII. The LhcSR and PsbS proteins were also identified in U. prolifera, and PsbS was noted to be significantly increased under HL stress. The long-term photoacclimation mechanism of U. prolifera under HL stress might not depend on cyclic PET flow around PSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T (2010) Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci U S A 107:11128–11133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alric J (2010) Cyclic electron flow around photosystem I in unicellular green algae. Photosynth Res 106:47–56

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta (BBA) Bioenerg 1143:113–134

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis. In Vivo Annu Rev Plant Biol 59:89–113

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1995) Molecular basis of the vulnerability of photosystem II to damage by light. Funct Plant Biol 22:201–208

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brambilla F, Resta D, Isak I, Zanotti M, Arnoldi A (2009) A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-chip coupled with Ion trap mass spectrometry. Proteomics 9:272–286

    Article  PubMed  CAS  Google Scholar 

  • Chuartzman SG et al (2008) Thylakoid membrane remodeling during state transitions in Arabidopsis. The Plant Cell Online 20:1029–1039

    Article  CAS  Google Scholar 

  • de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell Online 20:1012–1028

    Article  CAS  Google Scholar 

  • Ebenhoh O, Fucile G, Finazzi G, Rochaix JD, Goldschmidt-Clermont M (2014) Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. Philos Trans R Soc Lond B Biol Sci 369:20130223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Shen S, Wang G, Niu J, Lin A, Pan G (2011) PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant Cell Physiol 52:885–893

    Article  PubMed  CAS  Google Scholar 

  • Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2011) Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant, Cell Environ 34:922–932

    Article  CAS  Google Scholar 

  • Golding A, Johnson G (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    Article  PubMed  CAS  Google Scholar 

  • Griffin NM et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu W, Xie X, Gao S, Zhou W, Pan G, Wang G (2013) Comparison of different cells of Haematococcus pluvialis reveals an extensive acclimation mechanism during its aging process: From a perspective of photosynthesis. PLoS One 8

  • Hamilton M, Franco E, Deák Z, Schlodder E, Vass I, Nixon PJ (2014) Investigating the photoprotective role of cytochrome b-559 in photosystem II in a mutant with altered ligation of the haem. Plant Cell Physiol 55:1276–1285

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris E, Nield J, Gerle C, Barber J (2001) Three-dimensional structure of the photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135:262–269

    Article  PubMed  CAS  Google Scholar 

  • Huan L et al. (2014) Positive Correlation Between PSI Response and Oxidative Pentose Phosphate Pathway Activity During Salt Stress in the Intertidal Macroalgae Plant and Cell Physiology

  • Ivanov AG et al (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    Article  PubMed  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  PubMed  CAS  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B: Biol 137:89–99

    Article  CAS  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Müller-Moulé P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99:15222–15227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS. Protein J Biol Chem 279:22866–22874

    Article  PubMed  CAS  Google Scholar 

  • Lin A, Shen S, Wang G, Yi Q, Qiao H, Niu J, Pan G (2011) Comparison of chlorophyll and photosynthesis parameters of floating and attached Ulva prolifera. J Integr Plant Biol 53:25–34

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Long SP (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Mou S et al (2013) Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. Plant Biol (Stuttg) 15:1033–1039

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystem I and II. Annu Rev Plant Biol 57:521–565

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  PubMed  CAS  Google Scholar 

  • Peers G et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  PubMed  CAS  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta (BBA) - Bioenerg 1787:1151–1160

    Article  CAS  Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b 559 in photosystem II. J Photochem Photobiol B: Biol 104:341–347

    Article  CAS  Google Scholar 

  • Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta (BBA) - Bioenerg 1817:218–231

    Article  CAS  Google Scholar 

  • Rochaix J-D (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J-D (2011) Regulation of photosynthetic electron transport. Biochim Biophys Acta (BBA) - Bioenerg 1807:375–383

    Article  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2012) Cytochrome b 559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta (BBA) - Bioenerg 1817:66–75

    Article  CAS  Google Scholar 

  • Sun S et al. (2008) Emerging challenges: Massive green algae blooms in the Yellow Sea Nature Precedings:hdl:10101/npre.12008.12266.10101

  • Tan S, Cunningham FX, Youmans M, Grabowski B, Sun Z, Gantt E (1995) Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (chlorophyceae): comparasion of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polyppeptides in red and green cells. J Phycol 31:897–905

    Article  CAS  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  PubMed  CAS  Google Scholar 

  • Tiwari A, Pospíšil P (2009) Superoxide oxidase and reductase activity of cytochrome b559 in photosystem II. Biochim Biophys Acta (BBA) - Bioenerg 1787:985–994

    Article  CAS  Google Scholar 

  • Van Gorkom H, Schelvis J (1993) Kok's oxygen clock: what makes it tick? The structure of P680 and consequences of its oxidizing power. Photosynth Res 38:297–301

    Article  PubMed  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta (BBA) - Bioenerg 1817:209–217

    Article  CAS  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Gao S, Gu W, Pan G, Wang G (2013) Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta). PLoS One 8, e72929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science & Technology Program (2012BAC07B03), the National Natural Science Foundation of China (41176134; 41176137), Science and Technology Strategic Pilot of the Chinese Academy of Sciences (XDA05030401) and Public Science and Technology Research Funds Projects of the Ocean (201205010).

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 5825 kb)

High resulotion image (GIF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Huan, L., Yu, R. et al. Enhancement of Cytochrome b 559 Indicates Its Possible Involvement in Long-Term High Light Stress Tolerance in Intertidal Macroalgae. Plant Mol Biol Rep 33, 1918–1927 (2015). https://doi.org/10.1007/s11105-015-0885-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0885-7

Keywords

Navigation