Skip to main content
Log in

Le4 Is an Epicotyl Preferential Homologue of the Soybean Seed-Specific Le1 Lectin and the Vegetative Le3 Lectin Genes

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Legume lectins play important roles in signaling and defense. The best known legume lectinin soybean [Glycine max (L.) Merr.] is the seed-specific soybean agglutinin (Le1). Recently, we showed that the promoters of two Le1 homologues, Le2 and Le3, drive β-glucuronidase (GUS) gene expression in transgenic Arabidopsis thaliana. In the present study, five lectin copies (Le1Le5) were identified in the soybean genome sequence. Transcript profiles were investigated for Le1Le4 in 2-week-old soybean seedlings using real-time qPCR and compared with public RNA-Seq-based transcript profiles. Le3 transcripts are preferentially present in leaves, flowers, and vegetative tissues, while Le4 transcripts are preferentially present in seedling nodes and epicotyls. Whereas Le2 and Le5 are likely non-expressed pseudogenes, Le3 and Le4 were further investigated for possible tertiary structure and for presence of cis-regulatory promoter motifs. Models of LE3 and LE4 tertiary structures show high similarity to the LE1 structure, although differences in the active sites allow for differences in substrates. Our results also show that several interesting cis-regulatory motifs are present. Furthermore, we show that three duplication events have led to the formation of these five lectin genes, one event of which corresponds with the most recent soybean genome duplication at 13 Mya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Mya:

Million years ago

qPCR:

Quantitative polymerase chain reaction

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Bacic A, Williams ML, Clarke AE (1985) Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: nature of the surface saccharides as determined by quantitative lectin binding studies. J Histochem Cytochem 33:384–388

    Article  PubMed  CAS  Google Scholar 

  • Biegert A, Mayer C, Remmert M, Söding J, Lupas AN (2006) The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res 34:W335–W339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3:1–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci Chapter 2, Unit 2.9

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Gibson DM, Stack S, Krell K, House J (1982) A comparison of soybean agglutinin in cultivars resistant and susceptible to Phytophthora megasperma var. sojae (race 1). Plant Physiol 70:560–566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goldberg RB, Hoschek G, Vodkin LO (1983) An insertion sequence blocks the expression of a soybean lectin gene. Cell 33:465–475

    Article  PubMed  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Harada JJ, Spadoro-Tank J, Maxwell JC, Schnell DJ, Etzler ME (1990) Two lectin genes differentially expressed in Dolichos biflorus differ primarily by a 116-base pair sequence in their 5' flanking regions. J Biol Chem 265:4997–5001

    PubMed  CAS  Google Scholar 

  • Higo K (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hogervorst PAM, Ferry N, Gatehouse AMR, Wäckers FL, Romeis J (2006) Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fate of GNA after ingestion. J Insect Physiol 52:614–624

    Article  PubMed  CAS  Google Scholar 

  • Jiang S-Y, Ma Z, Ramachandran S (2010) Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 10:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Livingstone JM, Seguin P, Strömvik MV (2010) An in silico study of the genes for the isoflavonoid pathway enzymes in soybean reveals novel expressed homologues. Can J Plant Sci 90:453–469

    Article  CAS  Google Scholar 

  • Livingstone JM, Zolotarov Y, Strömvik MV (2011) Transcripts of soybean isoflavone 7-O-glucosyltransferase and hydroxyisoflavanone dehydratase gene homologues are at least as abundant as transcripts of their well known counterparts. Plant Physiol Biochem 49:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Olsen LR, Dessen A, Gupta D, Sabesan S, Sacchettini JC, Brewer CF (1997) X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 36:15073–15080

    Article  PubMed  CAS  Google Scholar 

  • Philip R, Darnowski DW, Sundararaman V, Cho M-J, Vodkin LO (1998) Localization of β-glucuronidase in protein bodies of transgenic tobacco seed by fusion to an amino terminal sequence of the soybean lectin gene. Plant Sci 137:191–204

    Article  CAS  Google Scholar 

  • Rawat R, Xu Z-F, Yao K-M, Chye M-L (2005) Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol Biol 57:629–643

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology, Humana Press, p 365–386

  • Saeed HA, Vodkin LO, Strömvik MV (2008) Promoters of the soybean seed lectin homologues Le2 and Le3 regulate gene expression in vegetative tissues in Arabidopsis. Plant Sci 175:868–876

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Severin AJ, Woody JL, Bolon Y-T, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq atlas of glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparvoli F, Lanave C, Santucci A, Bollini R, Lioi L (2001) Lectin and lectin-related proteins in lima bean (Phaseolus lunatus L.) seeds: biochemical and evolutionary studies. Plant Mol Biol 45:587–597

    Article  PubMed  CAS  Google Scholar 

  • Spilatro SR, Cochran GR, Walker RE, Cablish KL, Bittner CC (1996) Characterization of a new lectin of soybean vegetative tissues. Plant Physiol 110:825–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strömvik MV, Thibaud-Nissen F, Vodkin LO (2004) Chapte nine mining soybean expressed sequence tag and microarray data. In: Romeo JT (ed) Secondary metabolism in model systems. Recent advances in phytochemistry, Elsevier, vol. 38, p 177-195

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Damme EJ, Barre A, Smeets K, Torrekens S, Van Leuven F, Rougé P, Peumans WJ (1995) The bark of Robinia pseudoacacia contains a complex mixture of lectins. Characterization of the proteins and the cDNA clones. Plant Physiol 107:833–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. In: Kader JC, Delseney M (eds) Advances in botanical research, Advances in Botanical Research, Academic Press, p 107–209

  • Wolfe KH, Sharp PM, Li W-H (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29:208–211

    Article  CAS  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95:3708–3713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Tanya Copley, Christine Ide, and Caroline Traynor for technical assistance; Ulrika Egertsdotter for helpful technical discussions on the qRT-PCR experiment; and Bengt Svensson for critical review of the Le3 and Le4 tertiary structure models. This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to M.V. Strömvik. The authors also acknowledge support from the Centre SÈVE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina V. Strömvik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chragh, M., Zolotarov, Y., Saeed, H. et al. Le4 Is an Epicotyl Preferential Homologue of the Soybean Seed-Specific Le1 Lectin and the Vegetative Le3 Lectin Genes. Plant Mol Biol Rep 33, 1779–1789 (2015). https://doi.org/10.1007/s11105-015-0873-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0873-y

Keywords

Navigation