Skip to main content

Advertisement

Log in

Antisense RhMLO1 Gene Transformation Enhances Resistance to the Powdery Mildew Pathogen in Rosa multiflora

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Powdery mildew is one of the most important crop diseases worldwide. Genetic analysis has revealed that mutant alleles of the Mlo gene cause broad-spectrum resistance against pathogens found in cereal. In this study, the possibility of inducing powdery mildew (Podosphaera pannosa) resistance via transgenic technology in the rose was examined. The transgenic lines were confirmed for integration and copy number of the transgenes based on PCR and Southern blots. A clear correlation was found between resistance and the accumulation of silenced RhMLO1, based on real-time fluorescent quantitative PCR and resistance analysis. Compared with the control plants, transgenic roses displayed higher resistance levels. Furthermore, the results indicated that RhMLO1 has a negative role in the rose–powdery mildew pathogen interaction. This demonstrates the potentially viable strategy of rendering the Mlo homologs partially non-functional via a transgenic approach or mutagenesis in order to counter powdery mildew in Rosa. To the best of our knowledge, this study is one of the first attempts at using a Mlo-based resistance strategy to combat powdery mildew in Rosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstaedler A, Lotti C (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Liu GF, Shi XP, Xing W, Ning GG, Liu J, Bao MZ (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrid ‘Samansha’. Plant Cell Tissue Organ Cult 109:411–418

    Article  CAS  Google Scholar 

  • Ben Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195:335–345

    Article  CAS  Google Scholar 

  • Cairns T (2007) Modern roses XII. Academic, New York

    Google Scholar 

  • Chen ZY, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM (2009) Two seven-transmembrane domain mildew resistance locus O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21(7):1972–1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng H, Kun W, Liu D, Su Y, He Q (2012) Molecular cloning and expression analysis of CmMlo1 in melon. Mol Biol Rep 39:1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Rev Genet 38:716–720

    Article  CAS  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, Heijne G (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  PubMed  CAS  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal proteins. Acta Horticult 547:27–33

    Article  CAS  Google Scholar 

  • Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35:1255–1266

    Article  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–276

    Article  Google Scholar 

  • Humphry M, Reinstaedler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Article  PubMed  CAS  Google Scholar 

  • Jiwan D, Roalson EH, Main D, Dhingra A (2013) Antisense expression of peach mildew resistance locus O gene confers cross-species resistance to powdery mildew in Fragaria x ananassa. Transgenic Res 22:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of MLO powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Kaufmann H, Qiu XQ, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front Plant Sci. doi:10.3389/fpls.2012.00244

    PubMed  PubMed Central  Google Scholar 

  • Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein—isolation and characterization of a rice Mlo homologue. J Biol Chem 277:19304–19314

    Article  PubMed  CAS  Google Scholar 

  • Klie M, Debener T (2011) Identification of superior reference genes for data normalization of expression studies via quantitative PCR in hybrid roses. BMC Res Notes 4:518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262

    Article  PubMed  CAS  Google Scholar 

  • Linde M, Shishkoff N (2003) Powdery mildew. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose sciences. Elsevier Science, Oxford, pp 158–165

    Chapter  Google Scholar 

  • Liu Q, Zhu H (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ma LJ, Feng Y, Jiang LP, Shen M, Chai YR (2010) Modification of pFGC5941 and construction of RNAi vector of Brassica TT1 gene. J Agric Biotechnol 18(6):1189–1196 (in Chinese with English summary)

    CAS  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RGF, Bai Y, Lotti C, Ricciardi L (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431

    Article  PubMed  Google Scholar 

  • Qiu XQ, Zhang H, Wang QG, Jian HY, Yan HY, Zhang T, Wang JH, Tang KX (2012) Phylogenetic relationships of wild roses in China based on nrDNA and matK data. Sci Hortic 140:45–51

    Article  CAS  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24(6):895–903

    Article  PubMed  CAS  Google Scholar 

  • Terefe-Ayana D, Yasmin A, Le TL, Kaufmann H, Biber A, Kühr A (2011) Mining disease- resistance genes in roses: functional and molecular characterization of the rdr1 locus. Front Plant Sci. doi:10.3389/fpls.2011.00035

    PubMed  PubMed Central  Google Scholar 

  • Várallyay É, Giczey G, Burgyán J (2012) Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Arch Virol 157(7):1345–1350

    Article  PubMed  CAS  Google Scholar 

  • Xing LP, Qian C, Li MH, Cao AZ, Wang XE, Chen PD (2013) Transformation of antisense TaMlo gene and powdery mildew resistance analysis of transgenic plants. Acta Agron Sin 39(3):431–439 (in Chinese with English summary)

    Article  CAS  Google Scholar 

  • Yu L, Niu JS, Chen PD, Ma ZQ, Liu DJ (2005) Cloning, physical mapping and expression analysis of a wheat mlo-like. J Integr Plant Biol 47:214–222

    Article  CAS  Google Scholar 

  • Zhang H, Yang XM, Wang JH, Qu SP, Li SF, Tang KX (2009) Leaf disc assays of resistance of some Rosa germplasms to the powdery mildew in Yunnan. Plant Prot 35(4):131–133 (in Chinese with English summary)

    Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the Ministry of Science and Technology Project of China (No. 2011AA100208), National Natural Science Foundation of China (No. 31160403, No. 31160402 and No. 31360492), Natural Science Foundation of Yunnan (Nos. 2011FB124, 2014FB158, and 2011BB013), and Ministry of Agriculture Project of China (Nos. 200903020 and 2011G17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manzhu Bao or Kaixue Tang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Construction of plant antisense inhibition vector pFGC5941-anti-RhMLO1 (JPEG 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Wang, Q., Zhang, H. et al. Antisense RhMLO1 Gene Transformation Enhances Resistance to the Powdery Mildew Pathogen in Rosa multiflora . Plant Mol Biol Rep 33, 1659–1665 (2015). https://doi.org/10.1007/s11105-015-0862-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0862-1

Keywords

Navigation