Skip to main content
Log in

Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F2 individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact 18:354–362

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    Article  PubMed  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:716–720

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56:77–88

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ek M, Eklund M, von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    Article  PubMed  CAS  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269

    Article  PubMed  CAS  Google Scholar 

  • Holwitt E, Krasna AI (1974) Structural alterations in deoxyribonucleic acid on chemical ethylation. Arch Biochem Biophys 167:161–164

    Article  Google Scholar 

  • Huang CC, Groot T, Meijer-Dekens F, Niks RE, Lindhout P (1998) The resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon species is mainly associated with hypersensitive response. Eur J Plant Pathol 104:399–407

    Article  Google Scholar 

  • Hückelhoven R, Trujillo M, Kogel KH (2000) Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo-barley under attack from the powdery mildew fungus. Mol Plant Pathol 1:287–292

    Article  PubMed  Google Scholar 

  • Humphry M, Reinstädler, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol. doi:10.1111/J. 1364-3703.2011.00718.X

  • Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lyngkjaer MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo-gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Article  Google Scholar 

  • Ondřej M, Dostálová R, Trojan R (2008) Evaluation of virulence of Fusarium solani isolates on pea. Plant Protect Sci 44:9–18

    Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 33:389–392

    Article  PubMed  CAS  Google Scholar 

  • Pavan S, Zheng Z, van den Berg P, Lotti C, De Giovanni C, Borisova M, Lindhout P, de Jong H, Ricciardi L, Visser R, Bai Y (2008) Map vs. homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica 162:91–98

    Article  CAS  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Pereira G, Leitão J (2010) Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171:345–354

    Article  CAS  Google Scholar 

  • Pereira G, Marques C, Ribeiro R, Formiga S, Damaso M, Tavares Sousa M, Farinho M, Leitão JM (2010) Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 171:327–335

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky J (2000) Primer3 on the WWW for general users and for biologist programmers. Method Mol Biol 132:365–386

    CAS  Google Scholar 

  • Rubiales D, Fernandez-Aparicio M, Perez-de-Luque A, Castillejo MA, Prats E, Sillero JC, Rispail N, Fondevilla S (2009) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553–559

    Article  PubMed  CAS  Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF (1994) Linkage analysis of er1. a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C). Theor Appl Genet 88:1050–1055

    Article  CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase markers for powdery mildew resistance gene er1 in pea. Genome 41:440–444

    CAS  Google Scholar 

  • Tonguç M, Weeden NF (2010) Identification and mapping of molecular markers linked to er1 gene in pea. J Plant Mol Biol Biotech 1:1–5

    Google Scholar 

  • van Ooijen JW (2006) JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Pavan.

Additional information

Communicated by B. Diers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavan, S., Schiavulli, A., Appiano, M. et al. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123, 1425–1431 (2011). https://doi.org/10.1007/s00122-011-1677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1677-6

Keywords

Navigation