Skip to main content
Log in

Genome-Wide Dissection of Arabidopsis and Rice for the Identification and Expression Analysis of Glutathione Peroxidases Reveals Their Stress-Specific and Overlapping Response Patterns

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Excessive generation of reactive oxygen species (ROS) due to environmental stresses critically effects plant development and productivity. Plants efficiently detoxify ROS by both non-enzymatic and enzymatic mechanisms. Plant glutathione peroxidases (GPXs) are non-haeme thiol peroxidases that catalyze the reduction of H2O2 (or organic hydroperoxides) to water or the respective alcohols using reduced glutathione or thioredoxin. Genome-wide analysis of the known GPXs from rice and Arabidopsis genomes revealed their gene structure, conserved motifs, localization and tissue-specific and/or organ-specific expression profiles in response to various abiotic stresses. Among the eight genes that encoded GPX proteins from Arabidopsis, AtGPX3 showed two alternate spliced forms that spread over four chromosomes. Five genes encoded for rice GPX proteins, while OsGPX1 showed three spliced variants that were distributed on five chromosomes. Utilizing the publicly available microarray and massively parallel signature sequencing (MPSS) data, the GPXs revealed stress-responsive, tissue-specific and/or organ-specific expression profiles. Presence of important cis-regulatory elements analyzed in the GPX promoter sequences revealed their overlapping or specific responsiveness to different abiotic stresses. Co-expression data of Arabidopsis GPX genes suggested that various protein kinase family members and stress-responsive proteins co-expressed with the GPX proteins. Transcript profile of rice GPX genes by qRT-PCR validated their functional roles in signal transduction and stress pathways. Results revealed that plant GPXs play a crucial role in response to stress and significantly contribute towards their growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal G, Rakwal R, Jwa N, Agrawal V (2002) Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227–236

  • Bailey T, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Ismb 3:21–39

    CAS  PubMed  Google Scholar 

  • Bailey TL, Bode’n M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  • Brigelius-Flohé R, Flohé L (2003) Is there a role of glutathione peroxidases in signaling and differentiation? BioFact 17:93–102

    Article  Google Scholar 

  • Chang CC, Slesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux P, Parker J, Karpinska B, Karpinski S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photo-oxidative stress and immune responses. Plant Physiol 150:670–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman M (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiol 135:1630–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conrad M, Schneider M, Seiler A, Bornkamm GW (2007) Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem 388:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Cowan D, Weisel R, Williams W, Mickle D (1993) Identification of oxygen responsive elements in the 5′-flanking region of the human glutathione peroxidase gene. J Biol Chem 268:26904–26910

    CAS  PubMed  Google Scholar 

  • Delaunay A, Pflieger D, Barrault M, Vinh J, Toledano M (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 5:325–345

    Google Scholar 

  • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Diet ZKJ (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180

    Article  CAS  PubMed  Google Scholar 

  • Fu LH, Wang XF, Eyal Y, She YM, Donald L, Standing K, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom. mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem 277:25983–25991

    Article  CAS  PubMed  Google Scholar 

  • Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S (2012) The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 53:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto TA (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Roeckel-Drevet P, Drevet J (2007) Seleno independent glutathione peroxidases. more than simple antioxidant scavengers. FEBS J 274:2163–2180

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35:585–587

    Article  Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Lee K, Lee S, Chi Y, Jang H, Kang S, Lee K, Lim D, Yoon S, Yun DJ, Inoue Y, Cho M, Lee S (2002) A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J Biol Chem 277:12572–12578

    Article  CAS  PubMed  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  CAS  PubMed  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder A, Eggen R (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up regulated by singlet oxygen. Plant Mol Biol 46:395–408

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, Becker K, Roveri A, Bulato C, Benazzi L, De Palma A, Flohé L (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milla MAR, Butler E, Huete A, Wilson C, Anderson O, Gustafson J (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signalling pathways. Plant J 36:602–615

    Article  Google Scholar 

  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Gen 11:293–305

    Article  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff D, Issakidis E, Jacquot J-P, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passaia G, Spagnolo Fonini L, Caverzan A, Jardim-Messeder D, Christoff A, Gaeta M, de Araujo MJ, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPx3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    Article  CAS  PubMed  Google Scholar 

  • Pedrajas JR, Miranda‐Vizuete A, Javanmardy N, Gustafsson JA, Spyrou G (2000) Mitochondria of Saccharomyces cerevisiae contain one‐conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem 275:16296–16301

    Article  CAS  PubMed  Google Scholar 

  • Peltier JB, Ytterberg A, Sun Q, van Wijk K (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2005) The plant multigenic family of thiol peroxidases. Free Radic Biol Med 38:1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin- dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. J Biol Chem 277:13609–13614

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Savaskan NE, Rocha L, Kotter MR, Baer A, Lubec G, Meeteren LA, Bräuer AU (2007) Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64:230–243

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash H, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPx gene specifically upregulated by NaCl in a salt-tolerant line. Plant Physiol 161:467–477

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka T, Izawa S, Inoue Y (2005) GPx2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280:42078–42087

    Article  CAS  PubMed  Google Scholar 

  • Toppo S, Vanin S, Bosello V, Tosatto SCE (2008) Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Sign 10:1501–1514

    Article  CAS  Google Scholar 

  • Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:1486–1500

    Article  CAS  PubMed  Google Scholar 

  • Tosatto SC (2008) The catalytic site of glutathione peroxidases. Antioxid Redox Sign 10:1515–1526

    Article  CAS  Google Scholar 

  • Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayté J, Toledano MB, Hidalgo E (2005) A cysteine sulfinic acid in peroxiredoxin regulates H2O2 sensing by the antioxidant Pap1 pathway. Proc Natl Acad Sci U S A 102:8875–8880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XD, Dong CJ, Liu JY (2006) A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity. Plant Mol Biol 62:951–962

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ (2013) Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS One.8: e73989

Download references

Acknowledgments

We thank ICGEB for the pre-doctoral fellowship awarded to Tahmina Islam and CSIR for awarding the fellowship to Mrinalini Manna. In addition, we thank the Biocare grant from Department of Biotechnology awarded to Dr. Tanushri Kaul for providing us the funds for accomplishment of the aforesaid research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanushri Kaul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, T., Manna, M., Kaul, T. et al. Genome-Wide Dissection of Arabidopsis and Rice for the Identification and Expression Analysis of Glutathione Peroxidases Reveals Their Stress-Specific and Overlapping Response Patterns. Plant Mol Biol Rep 33, 1413–1427 (2015). https://doi.org/10.1007/s11105-014-0846-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0846-6

Keywords

Navigation