Skip to main content
Log in

Methyl Jasmonate Primed Defense Responses Against Penicillium expansum in Sweet Cherry Fruit

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The effect of methyl jasmonate (MeJA) treatment on controlling blue mold decay caused by Penicillium expansum in sweet cherry fruit and the possible mechanisms were investigated. The results indicated that fruit treated with MeJA had significantly lower disease incidence and smaller lesion diameter than the control fruit did. The in vitro experiment showed that MeJA transiently inhibited spore germination and germ tube elongation of P. expansum. It is clear that MeJA triggers a priming mechanism in sweet cherry fruit, since only in fruit that had been pretreated with MeJA and then challenged with P. expansum was an enhanced capacity to augment defense responses observed. These augmented responses included enhanced activities of chitinase (CHI) and β-1,3-glucanase (GLU), and increased gene expression levels of catalase (CAT), calmodulin (CaM), GLU, phenylalanine ammonia-lyase (PAL), nonexpressor of pathogenesis-related genes 1 (NPR1-like), and thaumatin-like (THAU). Moreover, MeJA inhibited the increase of activities of polygalacturonase (PG) and pectinmethylesterase (PME). These results suggest that the efficacy of MeJA on controlling blue mold decay in sweet cherry fruit may be related to the transient direct inhibitory effect against the pathogens, suppressed activities of PG and PME, and the priming of defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeles FB, Bosshart RP, Forrence LE, Habig WH (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahn IP, Lee SW, Kim MG, Park SR, Hwang DJ, Bae SC (2011) Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Mol Cells 32:7–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 105:859–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao SF, Zheng YH, Yang ZF, Tang SS, Jin P, Wang KT, Wang XM (2008) Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biol Technol 49:301–307

    Article  CAS  Google Scholar 

  • Ceponis MJ, Cappellini RA, Lightner GW (1987) Disorders in sweet cherry and strawberry shipments to the New York market, 1972–1984. Plant Dis 71:472–475

    Google Scholar 

  • Chang SJ, Puryear J, John C (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  CAS  PubMed  Google Scholar 

  • Chiasson D, Ekengren SK, Martin GB, Dobney SL, Snedden WA (2005) Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant Mol Biol 58:887–897

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Droby S, Porat R, Cohen L, Weiss B, Shapio B, Philosoph-Hadas S, Meir S (1999) Suppressing green mold decay in grapefruit with postharvest jasmonate application. J Am Soc Hortic Sci 124:184–188

    CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • González-Aguilar GA, Tiznado-Hernandez ME, Zavaleta-Gatica R, Martınez-Téllez MA (2004) Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochem Biophys Res Commun 313:694–701

    Article  PubMed  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans. Plant J 19:473–480

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Fang WW, Lu HP, Zhu RY, Lu LF, Zheng XD, Yu T (2014) Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biol Technol 88:72–78

    Article  CAS  Google Scholar 

  • Hammerschmidt R (2008) Challenge inoculation reveals the benefits of resistance priming. Physiol Mol Plant Pathol 73:59–60

    Article  Google Scholar 

  • Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harel MY, Kolton M, Elad Y, Rav-David D, Cytryn E, Ezra D, Graber ER (2011) Induced systemic resistance in strawberry (Fragaria × ananassa) to powdery mildew using various control agents. IOBC/wprs Bull 71:47–51

    Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Zheng YH, Tang SS, Rui HJ, Wang CY (2009) Enhancing disease resistance in peach fruit with methyl jasmonate. J Sci Food Agric 89:802–808

    Article  CAS  Google Scholar 

  • Kinkema M, Fan WH, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Xu C, Korban SS, Chen K (2010) Regulatory mechanisms of textural changes in ripening fruits. Crit Rev Plant Sci 29:222–243

    Article  Google Scholar 

  • Lin TP, Liu CC, Chen SW, Wang WY (1989) Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes. Plant Physiol 91:1445–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419

    Article  CAS  PubMed  Google Scholar 

  • Sha J (2005) Lipids, lipases and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  Google Scholar 

  • Sun DQ, Lu XH, Hu YL, Li WM, Hong KQ, Mo YW, Cahill DM, Xie JH (2013) Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Sci Hortic 164:484–491

    Article  CAS  Google Scholar 

  • Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2007) Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol 48:414–423

    Article  CAS  PubMed  Google Scholar 

  • Tian SP, Fan Q, Xu Y, Jiang AL (2002) Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol 51:352–358

    Article  Google Scholar 

  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75:100–105

    Article  Google Scholar 

  • van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116

    Article  PubMed  Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    Article  CAS  PubMed  Google Scholar 

  • Vilanova L, Wisniewski M, Norelli J, Viñas I, Torres R, Usall J, Phillips J, Droby S, Teixidó (2014) Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32:566–583

    Article  CAS  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Xu F, Wang J, Jin P, Zheng YH (2013a) Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem 136:400–406

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Wang J, Jin P, Zheng YH (2013b) Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit. Int J Food Microbiol 164:141–147

    Article  CAS  PubMed  Google Scholar 

  • Wei JM, Ma FW, Shi SG, Qi XD, Zhu XQ, Yuan JW (2010) Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol Technol 56:147–154

    Article  CAS  Google Scholar 

  • Yao HJ, Tian SP (2005) Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    Article  CAS  Google Scholar 

  • Yu C, Zeng L, Sheng K, Chen F, Zhou T, Zheng X, Yu T (2014) γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem 159:29–37

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Li YF, Yan LP, Xie J (2011) Effect of edible coatings on enzymes, cell-membrane integrity, and cell-wall constituents in relation to brittleness and firmness of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) during storage. Food Chem 124:569–575

    Article  CAS  Google Scholar 

  • Zhu Z, Tian SP (2012) Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci Hortic 142:38–43

    Article  CAS  Google Scholar 

  • Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31172003) and the Jiangsu Provincial Postgraduate Innovation Project of China (CXLX13_266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jin, P., Wang, J. et al. Methyl Jasmonate Primed Defense Responses Against Penicillium expansum in Sweet Cherry Fruit. Plant Mol Biol Rep 33, 1464–1471 (2015). https://doi.org/10.1007/s11105-014-0844-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0844-8

Keywords

Navigation