Skip to main content
Log in

Functional Analysis of the 5′-Regulatory Region of the Maize ALKALINE ALPHA-GALACTOSIDASE1 Gene

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Maize ALKALINE ALPHA GALACTOSIDASE (ZmAGA) is a key enzyme in the raffinose metabolism pathway. We have previously characterized the ZmAGA1 gene as heat shock induced in germinating maize seeds. Here, we report that ZmAGA1 is induced in maize leaves by heat shock, dehydration, NaCl, abscisic acid (ABA), and salicylic acid. The 1622 bp of the 5′-regulatory region of the ZmAGA1 gene was isolated and characterized for promoter activity. The 5′-deletion assay of the regulatory region indicated that the region from −629 to −1 (relative to the start codon AUG) showed the greatest promoter activity, and the sequences upstream of this fragment act to inhibit transcription. The cis-acting element ABRE (ABA - responsive element) was identified to be functional. Increasingly, more refined 3′-deletion constructs of the regulatory region demonstrated that a 6-nucleotide (nt) RNA motif in the 5′-untranslated region (UTR) of the ZmAGA1 gene stimulates the translation of the downstream open reading frame (ORF). Deletion or triplication of this motif decreased or enhanced downstream ORF translation, respectively, while the mRNA abundance remained the same. RNA-EMSA (electrophoretic mobility shift assay) confirmed that some cytosolic protein(s) was (were) able to bind to this 6-nt RNA motif. This work contributes to our understanding of the ZmAGA1 gene regulatory mechanism and the metabolism of raffinose in maize cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. doi:10.1038/nprot.2006.384

    Article  CAS  PubMed  Google Scholar 

  • Carmi N, Zhang GF, Petreikov M, Gao ZF, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106. doi:10.1046/j.1365-313X.2003.01609.x

    Article  CAS  PubMed  Google Scholar 

  • Daldoul S, Toumi I, Reustle GM, Krczal G, Ghorbel A, Mliki A, Hofer MU (2012) Molecular cloning and characterisation of a cDNA encoding a putative alkaline alpha-galactosidase from grapevine (Vitis vinifera L.) that is differentially expressed under osmotic stress. Acta Physiol Plant 34:891–903. doi:10.1007/s11738-011-0887-5

    Article  CAS  Google Scholar 

  • Elsayed AI, Rafudeen MS, Golldack D (2013) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol (Stuttg). doi:10.1111/plb.12053

    Google Scholar 

  • Gao ZF, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–987. doi:10.1104/Pp.119.3.979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao ZF, Petreikov M, Zamski E, Schaffer AA (1999) Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant 106:1–8. doi:10.1034/j.1399-3054.1999.106101.x

    Article  CAS  Google Scholar 

  • Gu L, Han Z, Zhang L, Downie B, Zhao T (2013) Functional analysis of the 5′ regulatory region of the maize GALACTINOL SYNTHASE2 gene. Plant Sci 213:38–45. doi:10.1016/j.plantsci.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Tokunaga K, Kuboi T (2008) Isolation of a drought-responsive alkaline alpha-galactosidase gene from New Zealand spinach. Plant Biotechnol 25:497–501. doi:10.5511/plantbiotechnology.25.497

    Article  CAS  Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hood HM, Neafsey DE, Galagan J, Sachs MS (2009) Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 63:385–409. doi:10.1146/annurev.micro.62.081307.162835

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, VDE W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. doi:10.1111/pce.12061

    PubMed  Google Scholar 

  • Kulkarni SD, Muralidharan B, Panda AC, Bakthavachalu B, Vindu A, Seshadri V (2011) Glucose-stimulated translation regulation of insulin by the 5′ UTR-binding proteins. J Biol Chem 286:14146–14156. doi:10.1074/jbc.M110.190553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147. doi:10.1016/j.cell.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Lin MC, Chen SCG (2004) A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol 55:281–295. doi:10.1007/s11103-004-0641-0, 55

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Hsu JH, Huang HJ, Lo SF, Chen SC (2009) Alkaline alpha-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytol 184:596–606. doi:10.1111/j.1469-8137.2009.02999.x

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE (2008) Sucrose metabolism. In: Encyclopedia of life sciences. Wiley, Chichester, pp 0015902–0021259

  • Narusaka Y et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Niu CF et al (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170. doi:10.1111/j.1365-3040.2012.02480.x

    Article  CAS  PubMed  Google Scholar 

  • Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Egert A, Stieger B, Keller F (2010) Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline alpha-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern. Plant Cell Physiol 51:1815–1819. doi:10.1093/Pcp/Pcq127

    Article  CAS  PubMed  Google Scholar 

  • Taji T et al (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Westfall CS, Muehler AM, Jez JM (2013) Enzyme action in the regulation of plant hormone responses. J Biol Chem 288:19304–19311. doi:10.1074/jbc.R113.475160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao TY, Martin D, Meeley R, Downie B (2004) Expression of the maize GALACTINOL SYNTHASE gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells. Physiol Plant 121:647–655

    Article  CAS  Google Scholar 

  • Zhao TY, Corum JW, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline alpha-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16:107–121. doi:10.1079/Ssr2006243

    Article  CAS  Google Scholar 

  • Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149:67–78. doi:10.1111/ppl.12019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the special fund for transgenic research from Ministry of Agriculture in China 2014ZX0800920B (to T.Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Li, T., Zhang, L. et al. Functional Analysis of the 5′-Regulatory Region of the Maize ALKALINE ALPHA-GALACTOSIDASE1 Gene. Plant Mol Biol Rep 33, 1361–1370 (2015). https://doi.org/10.1007/s11105-014-0840-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0840-z

Keywords

Navigation