Skip to main content
Log in

Isolation and Functional Analysis of Convolvulus arvensis EPSPS Promoter

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A 1142-bp upstream sequence (named CaEPSPS-P, GenBank accession number: KC107822) of the EPSPS gene from Convolvulus arvensis L was obtained by genome walking. The full-length sequence of the CaEPSPS-P and four deletion mutants were fused to the β-glucuronidase (GUS) gene and introduced into Arabidopsis via Agrobacterium-mediated transformation. Histochemical GUS staining of the transgenic plants showed that the CaEPSPS-P could drive GUS expression in the roots, stems, and leaves, but no visible GUS staining was detected in seeds. Further deletion analysis revealed two positive regulatory regions (−900 to −632 and −632 to −418) responsible for the basal activity of the EPSPS promoter. GUS activity assays indicated that GUS expression can be stimulated by light and glyphosate. In addition, a region between −632 and −400 was necessary for light-induced expression, while a region from −900 to −632 was necessary for glyphosate-induced GUS expression. These results suggested that the CaEPSPS-P was modulated by multiple cis-regulatory elements in distinct and complex patterns to regulate transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EPSPS:

5-enolpyruvylshikimate-3 phosphate synthase

CTAB:

Cetyl trimethyl ammonium bromide

cDNAs:

Complementary DNAs

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

GUS:

β-Glucuronidase

MS:

Murashige and Skoog

WT:

Wild type

4-MU:

4-Methylumbelliferone

References

  • An G, Costa MA, Mitra A, Ha SB, Laszlo M (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Braford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • DeGennaro FP, Weller SC (1984) Differential sensitivity of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci 32:472–476

    CAS  Google Scholar 

  • Dolye JJ, Dolye JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fang RX, Ferenc N, Shanthi S, NamHai C (1989) Multiple cis regulatory elements for maximal expression of the Cauliflower Mosaic Virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. PNAS 107:1029–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2:369–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldsbrough PB, Hatch EM, Huang B, Kosinski WG, Dyer WE, Klaus MH, Weller SC (1990) Gene amplification in glyphosate tolerant tobacco cells. Plant Sci 72:53–62

    Article  CAS  Google Scholar 

  • Gong Y, Liao Z, Chen M, Guo B, Jin H, Sun X, Tang K (2006) Characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from Camptotheca acuminata. Biol Plant 50(4):542–550

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang ZF, Zhang CX, Wei SH, Huang HJ, Liu Y, Cui HL, Chen JC, Yang L, Chen JY (2014) Molecular cloning and characterization of 5-enolpyruvylshikimate-3-phosphate Synthase gene from Convolvulus arvensis L. Mol Biol Rep 41:2077–2084

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17:3239–3256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: A factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res Database Issue 30:325–327

    Article  CAS  Google Scholar 

  • Li Y, Sun Y, Yang QC, Kang JM, Zhang TJ, Gruber MY, Fang F (2012) Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Mol Biol Rep 39(8):8559–8569

    Article  PubMed  CAS  Google Scholar 

  • Mazarei M, Ying Z, Houtz RL (1998) Functional analysis of the RuBisCo large subunit N-methyltransferase promoter from tobacco and its regulation by light in soybean hairy roots. Plant Cell Rep 17:907–912

    Article  CAS  Google Scholar 

  • Meilan R, Han KH, Ma C, DiFazio SP, Eaton J (2002) The CP4 transgene provides high levels of tolerance to Roundup® herbicide in field-grown hybrid poplars. Can J Res 32:967–976

    Article  CAS  Google Scholar 

  • Padgette SR, Kolacz K, Delannay X, Re D, LaVallee B et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1460

    Article  CAS  Google Scholar 

  • Priestman MA, Funke T, Singh IM, Crupper SS, Schonbrunn E (2005) 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 579:728–732

    Article  PubMed  CAS  Google Scholar 

  • Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvyl-shikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98(4):1376–1380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Article  PubMed  CAS  Google Scholar 

  • Steinrucken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Steinrücken HC, Schulz A, Amrhein N, Porter CA, Fraley RT (1986) Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase in a glyphosate-tolerant Petunia hybrida cell line. Arch Biochem Biophys 244:169–178

    Article  PubMed  Google Scholar 

  • Tian YS, Xu J, Xiong AS, Zhao W, Fu XY, Peng RH, Yao QH (2011) Improvement of glyphosate resistance through concurrent mutations in three amino acids of the ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 77:8409–8414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weaver SE, Riley WR (1982) The biology of Canadian weeds. 53. Convolvulus arvensis L. Can J Plant Sci 62:461–472

    Article  Google Scholar 

  • Westwood JH, Weller SC (1997) Cellular mechanismsinfluence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis). Weed Sci 45(1):2–11

    CAS  Google Scholar 

  • Westwood JH, Yerkes CN, DeGennaro FP, Weller SC (1997) Absorption and translocation of glyphosate in tolerant and susceptible biotypes of field bindweed (Convolvulus arvensis). Weed Sci 45(4):658–663

    CAS  Google Scholar 

  • Yi Y, Qiao DR, Bai LH, Xu H, Li Y (2007) Cloning, expression, and functional characterization of the Dunaliella salina 5-enolpyruvylshikimate-3-phosphate synthase gene in Escherichia coli. J Microbiol 45(2):153–157

    PubMed  CAS  Google Scholar 

  • Yu Q, Abdallah I, Han HP, Owen M, Powles S (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230:713–723

    Article  PubMed  CAS  Google Scholar 

  • Yuan CI, Chaing MY, Chen YM (2002) Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis. Plant Sci 163:543–554

    Article  CAS  Google Scholar 

  • Zhang M, Zhang CX, Fang F, Liu WW, Guo F (2011) Glyphosate tolerance comparison of field bindweed (Convolvulus arvensis) population from different areas. Weed Sci (from China) 29(2):40–42, in Chinese

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Li Cui from the Chinese Academy of Agriculture Sciences for helpful discussions and critical reading of this manuscript. This work is funded by Special Fund for Agro-scientific Research in the Public Interest (201303022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoxian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wang, G., Huang, H. et al. Isolation and Functional Analysis of Convolvulus arvensis EPSPS Promoter. Plant Mol Biol Rep 33, 1650–1658 (2015). https://doi.org/10.1007/s11105-015-0861-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0861-2

Keywords

Navigation