Skip to main content
Log in

Cloning and Function Characterization of a β-Ketoacyl-acyl-ACP Synthase I from Coconut (Cocos nucifera L.) Endosperm

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Coconuts contain beneficial medium-chain fatty acids (MCFAs), particularly lauric acid. The mechanism by which coconuts accumulate MCFAs has been a topic of research because of increasing energy demands. β-Ketoacyl-ACP synthase (KAS) I, a requisite enzyme for chain length regulation in plants, was isolated from coconut endosperm complementary DNA (cDNA) libraries and designated CocoKASI (GenBank accession: JX275887). CocoKASI contained an open reading frame (ORF) of 1485 bp encoding a polypeptide of 494 amino acids (nucleotide positions 134–1618). Expression of CocoKASI determined by fluorescence quantitative real-time PCR was 60 % higher in developing coconut endosperm than in leaves. Fatty acid profiles of endosperm at two different stages showed that the levels of C8:0, C10:0, C12:0, C14:0, and C18:0 increased, while the relative compositions of other fatty acid species, especially C16:0, C18:1, and C18:3, were reduced. Overexpression of CocoKASI cDNA using the seed-specific tobacco (Nicotiana tabacum L.) napin promoter increased short-chain and MCFAs from C6:0 to C16:0, although CocoKASI transcript levels varied 100-fold in tobacco seeds from different transgenic plants. These data suggested that CocoKASI had a preference for catalyzing the elongation of C4:0–C14:0 on ACP to yield C6:0–C16:0 fatty acids in plants. This result was similar to the findings reported for KASI in other species. This study characterized and determined the function of KASI from a tropical oil crop. The results give insights into the regulation of fatty acid biosynthesis and the accumulation of MCFAs in higher plants. The findings will contribute to the engineering, altering, and accumulation of short-chain and MCFAs to meet energy demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbadi A, Brummel M, Spener F (2000) Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis. Plant J 24(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Aghoram K, Wilson RF, Burton JW, Dewey RE (2006) A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci 46(6):2453–2459

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar AS, Prasanth Kumar PK, Hemavathy J, Gopala Krishna AG (2009) Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J Am Oil Chem Soc 86(10):991–999

    Article  CAS  Google Scholar 

  • Bruck FM, Brummel M, Schuch R, Spener F (1996) In-vitro evidence for feed-back regulation of β-ketoacyl-acyl carrier protein synthase III in medium-chain fatty acid biosynthesis. Planta 198:271–278

    Article  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chi X, Chen M, Yang Q, He Y, Pan L, Gao Y, Yu S (2010) Isolation and expression analysis of a β-ketoacyl-acyl carrier protein synthase I gene from Arachis hypogaea L. Legum Genomics Genet 1(3):11–17

    Google Scholar 

  • Davies HM, Hawkins DJ, Nelsen JS (1995) Lysophosphatidic acid acyltransferase from immature coconut endosperm having medium chain length substrate specificity. Phytochemistry 39:989–996

    Article  CAS  Google Scholar 

  • DebMandal M, Mandal S (2011) Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med 4(3):241–247

    Article  PubMed  Google Scholar 

  • Deshesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125(2):1103–1114

    Article  Google Scholar 

  • Dyer JM, Stymne S, Green AG, Carlsson AS (2008) High-value oils from plants. Plant J 54:640–655

    Article  CAS  PubMed  Google Scholar 

  • González-Mellado D, von Wettstein-Knowles P, Garcés R, Martínez-Force E (2010) The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. Planta 231(6):1277–1289

    Article  PubMed  Google Scholar 

  • Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974) Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249:6633–6645

    CAS  PubMed  Google Scholar 

  • Hakozaki H, Park JI, Endo M, Takada Y, Kazama T, Takeda Y, Suzuki G, Kawagishi-Kobayashi M, Watanabe M (2008) Expression and developmental function of the 3-ketoacyl-acyl carrier protein synthase2 gene in Arabidopsis thaliana. Genes Genet Syst 83(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Head K, Galos T, Fang Y, Hudson K (2012) Mutations in the soybean 3-ketoacyl-ACP synthase gene are correlated with high levels of seed palmitic acid. Mol Breeding 30(3):1519–1523

    Article  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas PJ, Schilperoort R (1983) A binary plant vector strategy based on separation of viran and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hwang SK, Kim KH, Hwang YS (2000) Molecular cloning and expression analysis of 3-ketoacyl-ACP synthases in the immature seeds of Perilla frutescens. Mol Cells 10(5):533–539

    Article  CAS  PubMed  Google Scholar 

  • Jackowski S, Rock CO (1987) Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem 262:7927–7931

    CAS  PubMed  Google Scholar 

  • James DW, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245

    Article  CAS  PubMed  Google Scholar 

  • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kauppinen S, Siggaard-Andersen M, von Wettstein-Knowles P (1988) β-Ketoacyl-ACP synthase of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun 53:357–370

    Article  CAS  PubMed  Google Scholar 

  • Knutzon DS, Lardizabal KD, Nelsen JS, Bleibaum JL, Davies HM, Metz JG (1995) Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiol 109(3):999–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120(3):739–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci USA 91:3598–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program. Primer3 Bioinforma 23(10):1289–1291

    Article  CAS  Google Scholar 

  • Kridl JC, McCarter DW, Rose RE, Scherer DE, Knutzon DS, Radke SE, Knauf VC (1991) Isolation and characterization of an expressed napin gene from Brassica rapa. Seed Sci Res 1:202–219

    Article  Google Scholar 

  • Leonard JM, Knapp SJ, Slabaugh MB (1998) A Cuphea β-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases. Plant J 13(5):621–628

    Article  CAS  PubMed  Google Scholar 

  • Li D, Fan Y (2007) Extraction and quality analysis of total RNA from pulp of coconut (Cocos nucifera L.). Mol Plant Breeding 5:883–886 [In Chinese]

    CAS  Google Scholar 

  • Li D, Fan Y (2009) Cloning, characterization, and expression analysis of an oleosin gene in coconut (Cocos nucifera L.) pulp. J Hortic Sci Biotech 84:483–488

    CAS  Google Scholar 

  • Li J, Li M, Wu P, Tian C, Jiang H, Wu G (2008) Molecular cloning and expression analysis of a gene encoding a putative β-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III) from Jatropha curcas. Tree Physiol 28(6):921–927

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li A, Xia H, Zhao C, Li C, Wan S, Bi Y, Wang X (2009) Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. J Biosci 34(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Livak K, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Magnuson K, Jackowski S, Rock CO, Cronan JE Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 16:19–25

    Article  Google Scholar 

  • Mekhedov S, Cahoon EB, Ohlrogge J (2001) An unusual seed-specific 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic acid in coriander. Plant Mol Biol 47:507–518

    Article  CAS  PubMed  Google Scholar 

  • Oo KC, Stumpf PK (1979) Fatty acid biosynthesis in the developing endosperm of Cocos nucifera. Lipids 14:132–143

    Article  CAS  Google Scholar 

  • Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oil and fats. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London, pp 49–170

    Google Scholar 

  • Panicker LM, Usha R, Roy S, Mandal C (2009) Purification and characterization of a serine protease (CESP) from mature coconut endosperm. BMC Res Notes 2:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA 104(11):4742–4747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292(5):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Schuch R, Winter E, Bruck FM, Brummel M, Spener F (1997) β-Ketoacyl-acyl carrier protein synthases in the regulation of fatty acid synthase activity in higher plants—an overview. Fett-Lipid 99(8):278–281

    Article  CAS  Google Scholar 

  • Shimakata T, Stumpf PK (1982) Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A 79:5808–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1983) Purification and characterization of beta-ketoacyl-ACP synthetase I from Spinacia oleracea leaves. Arch Biochem Biophys 220(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Slabaugh MB, Tai H, Jaworski J, Knapp SJ (1995) cDNA clones encoding β-ketoacyl-acyl carrier protein synthase III from Cuphea wrightii. Plant Physiol 108:443–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Cao Y-Z, Huang AHC (1988) Acyl coenzyme A preference of the glycerol phosphate pathway in the microsomes from the maturing seeds of palm, maize, and rapeseed. Plant Physiol 88:56–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tai H, Post-Beittenmiller D, Jaworski JG (1994) Cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from Arabidopsis. Plant Physiol 106(2):801–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Teh OK, Ramli US (2011) Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana. Mol Biotechnol 48(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

    Article  Google Scholar 

  • Wei Q, Li J, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G (2012) Cloning and characterization of a β-ketoacyl-acyl carrier protein synthase II from Jatropha curcas. J Plant Physiol 169(8):816–824

    Article  CAS  PubMed  Google Scholar 

  • Wu GZ, Xue HW (2010) Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and play a role in chloroplast division and embryo development. Plant Cell 22(11):3726–3744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, James DW Jr, Dooner HK, Browse J (1994) A mutant of Arabidopsis deficient in the elongation of palmitic acid. Plant Physiol 106(1):143–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuno R, Wettstein-Knowles PV, Wada H (2004) Identification and molecular characterization of the β-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase. J Biol Chem 279(9):8242–8251

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chen Y, Yan S, Liang Y, Zheng Y, Li D (2014) Molecular cloning and characterisation of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids. Funct Plant Biol 41:80–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant nos.: 31060259, 31160171, 31260193, and 31360476).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianqun Luo or Li Dongdong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Liang, Y., Li, B. et al. Cloning and Function Characterization of a β-Ketoacyl-acyl-ACP Synthase I from Coconut (Cocos nucifera L.) Endosperm. Plant Mol Biol Rep 33, 1131–1140 (2015). https://doi.org/10.1007/s11105-014-0816-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0816-z

Keywords

Navigation