Skip to main content
Log in

Functional Characterization of a Putative Bacterial Wilt Resistance Gene (RE-bw) in Eggplant

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2015

Abstract

In this study, a putative resistant gene RE-bw was isolated from bacterial wilt-resistant eggplant inbred line (E-31) by cDNA amplified fragment length polymorphism (cDNA-AFLP) and rapid amplification of cDNA end (RACE). RE-bw has a length of 1,210 bp with 1,116 bp open reading frame (ORF) which encodes 371 amio acids. Bioinformation analysis showed that RE-bw include an NB-ACR and WRKY domain and involved in protein binding and defense response progress. Overexpression and RNAi experiments indicated that the RE-bw was an important gene for bacterial wilt resistance. Further research result showed that RE-bw is involved in enhanced SA content, ROS-scavenging enzymatic activities, cell wall, and lignin to limit the colonization of Ralstonia solanacearum. Bimolecular fluorescence complementation assay and yeast two-hybrid assay confirmed that RE-bw interacted with EDS1, PAD4, NPR1, SGT1, WRKY70, and avirulence effector Popp2 of R. solanacearum. The results provide an important new clue on understanding the mechanism of bacterial wilt disease resistance in eggplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG (1997) Inactivation of the flax rust resistance gene M associated with the loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9:641–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bachem CWB, Vander HRS, De Bruijn SM, Verudenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA ngerprinting based on AFLP analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  CAS  PubMed  Google Scholar 

  • Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet A, Gentzbittel L, Vailleau F (2013) MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytol 199(3):758–772

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPs2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance gene. Science 265:1856–1860

    Article  CAS  PubMed  Google Scholar 

  • Brunner S, Hurni S, Herren G, Kalinina O, Von Brug S, Zeller SL, Winzeler M, Keller B (2011) Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol J 9(8):897–910

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Kleine M, Kifle S, Haeioff HJ (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  CAS  PubMed  Google Scholar 

  • Cao BH, Lei JJ, Wang Y, Chen GJ (2009) Inheritance and identification of SCAR linked to bacterial wilt-resistance in eggplant. Afr J Biotechnol 8:5201–5207

    CAS  Google Scholar 

  • Cao BH, Huang ZY, Chen GJ, Lei JJ (2010) Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system. Genet Mol Biol 33(2):298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao BH, Wei XS, Lei JJ, Xiao XO, Chen QH (2012) Inducing male sterility of tomato using two component system. Plant Cell Tiss Org 111:163–172

    Article  Google Scholar 

  • Cao Y, Tian B, Liu Y, Cai L, Wang H, Lu N, Wang M, Shang S, Luo Z, Shi J (2013) Genome sequencing of Ralstonia solanacearum FQY_4, isolated from a bacterial wilt nursery used for breeding crop resistance. Genome Announc 3:e00125–13

    Google Scholar 

  • Chaudhary DR (2000) Inheritance of resistance to bacterial wilt (Ralstonia solanacearum EF Smith) in eggplant. Haryana J Horticult Sci 29(1/2):89–90

    Google Scholar 

  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009) Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen- activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plantarum 136(3):324–35

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner EP, Beynon J, Marco (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99:2404–2409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. PNAS 100:8024–8029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digonnet C, Martinez Y, Denancé N, Chasseray M, Dabos P, Ranocha P, Marco Y (2012) Jauneau A Goffner D (2012) Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: Focus at the plant cell wall. Planta 236(5):1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Dixon MS, Jones JGD, Keddie JS, Thomas CM, Harisson K, Jones JGD (1996) The tomato cf-2 disease resistance locus comprises two functional gene encoding leucine-rich repeat protein. Cell 84:451–459

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY subfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka H, Miyatake K, Nunome T, Negoro S, Yamaguchi H, Ohyama A (2010) Development of an integrated linkage mapusing genomic SSR and gene based SNPs markers in eggplant. In: Prohens J, Rodriguez A (eds) Advances in genetics and breeding of capsicum and eggplant. Editorial de la universitat Politechnica de Valenca, Valenca, pp 359–375

    Google Scholar 

  • Gopalakrishnan, TR, Singh PK, Sheela mKB, Shankar MA, Kutty PCJ, Peter KV (2005) Development of bacterial wilt resistant varieties and basis of resistance in eggplant (Solanum melongena L.). Bacterial wilt disease and the Ralstonia solanacearum species complex 293–300

  • Gousset C, Collonnie C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (Solanum melongena L.). Plant Sci 168:319–327

    Article  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enable dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Grimault V, Prior P (1994) Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper:a comparative study. Eur J Plant Pathol 100:259–267

    Article  Google Scholar 

  • Hayward AC (1994) The hosts of Pseudomonas solanacearum. In: Hayward AC, Harhnan GL (eds) Bacterial wilt: the disease and its causative agent, Pseudomonas. CAB International, Wallingford, pp 9–25

    Google Scholar 

  • Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch J, Deslandes L, Feng DX, Balague C, Marco Y (2002) Delayed symptom development in ein2-1, an Arabidopsis ethylene-insensitive mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92:1142–1148

    Article  PubMed  Google Scholar 

  • Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I, Marco Y (2008) Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS One 3(7):e2589

    Article  PubMed Central  PubMed  Google Scholar 

  • Hur YJ, Jeung JU, Kim SY, Park HS, Cho JH, Lee JY, Sohn YB, Song YC, Lee CW, Sohn JG, Nam LJH (2013) Functional markers for bacterial blight resistance gene Xa3 in rice. Mol Breeding 31(4):981–985

    Article  CAS  Google Scholar 

  • Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, Mclntosh RA, Keller B (2013) Powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. doi:10.1111/tpj.1259

    PubMed  Google Scholar 

  • Ingvardsen CR, Xing YZ, Frei UK, Lubberstedt (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize.Theror. Appl genet 120(8):1621–1634

    Article  Google Scholar 

  • Jacobs JM, Babujee L, Meng F (2012) The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 3(4):e112–e114

    Article  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductivity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Jones JDG (1996) The roles of leucine-rich repeats in plant defenses. Adv Bot Res 24:90–167

    Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  PubMed  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebeau A, Gouy M, Daunay MC, Wicker E, Chiroleu F, Prior P, Frary A, Dintinger J (2013) Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl Genet 126:143–15

    Article  CAS  PubMed  Google Scholar 

  • Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein–protein interactions in living plant cells. Plant Methods 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP (2008) Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol Plant Microbe In 21:1261–1270

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus induced gene silencing of a deficient ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701–711

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Liu XL, Dai LY, Wang GL (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genom 34(9):765–776

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔ Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luna MC, Tudela JA, Martínez-Sánchez A, Allende A, Marín A, Gril MI (2012) Long-term deficit and excess of irrigation influences quality and browning related enzymes and phenolic metabolism of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biol Tec 73:37–45

    Article  CAS  Google Scholar 

  • Martin GB (1999) Functional analysis of plant disease-resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Article  CAS  PubMed  Google Scholar 

  • Mercedes EC, Sylvia VC, Victor HA (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J Agr Food Chem 51(2227–2231):2227

    Google Scholar 

  • Milling A, Babujee L, Allen C (2011) Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in Wilt-Resistant tomato plants. PLoS One 6(1):e15853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM (2010) The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Mol Plant Microbe In 10:1303–1315

    Article  Google Scholar 

  • Mukhtar MS, Deslandes L, Auriac M, Macro Y, Somssich IE (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56(6):935–947

    Article  CAS  PubMed  Google Scholar 

  • Narancio R, Zorrilla P, Robello C, Gonzalez M, Vilaro F, Pritsch C, Rizza MD (2013) Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. Against Ralstonia solanacearum. Eur J Plant Pathol 136(4):823–835

    Article  CAS  Google Scholar 

  • Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Hiroshi E, Nanasato Y, Tabei Y, Takano Y, Shirasu K, Narusaka Y (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS One 8(2):e55954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    Article  CAS  PubMed  Google Scholar 

  • Norman DJ, Zapata M, Gabriel DW, Duan YP, Yuen JM, Mangravita-Novo A, Donahoo RS (2009) Genetic diversity and host range variation of Ralstonis solanacearum strains entering North America. Phytopathology 99(9):1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Nunome T, Yoshida T, Hirai M (1998) Genetic linkage map of eggplant (Solanum melongena). In: Palloix A, Daunay MC (eds) Xth EUCARPIA meeting on genetics and breeding on Capsicum and Eggplant. INRA Paris, Avignon, pp 239–242

    Google Scholar 

  • Remenant B, Babujee L, Lajus A, Médigue C, Prior P (2012) Allen C (2012) Sequencing of k60, type strain of the major plant pathogen Ralstonia solanacearum. J Bacteriol 194(10):2742–2743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933

  • Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Zhang WJ, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust Race Group. Science 341(6147):783–786

    Article  CAS  PubMed  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thébault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415(6871):497–502

    Article  CAS  PubMed  Google Scholar 

  • Schell MA (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Plant Physiol Plant Mol Biol 38:263–292

    CAS  Google Scholar 

  • Scott JW, Wang JF, Hanson PM (2005) Breeding tomatoes for resistance to bacterial wilt, a global view. In: Momol T, Ji P, Jones JB (eds) Proceeding of 1st International Symposium on Tomato Diseases. Acta Horticulturae, Florida, pp 161–172

    Chapter  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. PNAS 100:9128–9133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. PNAS 96:14153–14158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: Molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    Article  CAS  PubMed  Google Scholar 

  • Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L (2010) Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 6(11):e1001202

  • Thakur PP, Mathew D, Nazeem PA, Abida PS, Indira P, Girija D, Shylaja MR, Valsala PA (2014) Identification of allele specific AFLP markers linked with bacterial wilt [Ralstonia solanacearum (Smith) Yabuuchi et al.] resistance in hot peppers (Capsicum annuum L.). Physiol Mol Plant P 87:19–24

    Article  CAS  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Kate H (1997) Characterization of the tomato cf-4 gene for resistance to Cladosporium fulvum identifies sequence that determines recognition specificity in cf-4and cf-9. Plant Cell 9:2209–2224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian SB, Wang YQ, Luo ZY, Li M, Chen L, Chen YK, Hong YJ (2007) Genetic analysis of resistance to bacterial wilt in eggplant(Solanunm melongena). South West China J Agricult Sci 04:642–645

    Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plantarum 138(4):414–429

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. PNAS 99(1):517–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van der Linden L, Bredenkamp J, Naidoo S, Fouche-Weich J, Denby KJ, Genin S, Marco Y, Berger DK (2013) Gene-for-gene tolerance to bacterial wilt in Arabidopsis. Mol Plant Microbe In 26(4):398–406

    Article  Google Scholar 

  • Van LLC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Plant Physiol Plant Mol Biol l44:135–162

    Google Scholar 

  • Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe In 8:241–251

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: The elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  CAS  PubMed  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for blast resistance belong to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wang JF, Ho FI, Truong HTH, Huang SM, Balatero CH, Dittapongpitch V, Hidayati N (2013) Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190(2):241–252

    Article  CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N:similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis mediated by RPW8. Science 291:118–120

    Article  CAS  PubMed  Google Scholar 

  • Xiao XO, Li GN, Cao BH, Lei JJ, Chen QH, Chen GJ (2012) Effect of inoculation of Ralstonia solanacearum on gene expression in defense signaling pathways and accumulation of ROS in eggplants. Plant Physiol J 48(9):874–880

    CAS  Google Scholar 

  • Xu J, Zheng HJ, Liu L, Pang ZC, Prior P, Tang Biao XJS, Hao Z, Qian T, Zhang LQ, Feng J (2011) Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J Bacteriol 193(16):4261–4262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi UKY, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight –resistance gene in rice, is induced by bacterial inoculation. PNAS 95:1663–1668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Natural Science Fundation of China [Grant No. 3097200], the Natural Science Fund of Guangdong Province [Grant No. S2011030001410], and the Key Laboratory of Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China of Guangdong Higher Education Institutes, South China Agricultural University [Grant No. KBL11008].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Bihao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

cDNA-AFLP analysis of primers combination T3/A8 in resistant and susceptible eggplant. 1: E-31(R); 2: E-32 × E-31(R);3: E-32(S);4 ~ 8,13 ~ 16,18,19: resistant plants in F2 of E-32 × E-31 ;9 ~ 12,17,20,21: susceptible plants in F2 of E-32 × E-31; the arrows show difference special band. (GIF 35 kb)

High resolution image (TIFF 3115 kb)

Fig. S2

The expression level of RE-bw. A: the expression of RE-bw in the different part of resistant plant (E-31) under normal condition. Lanes 1 and 2 showing the leaf of E-31. Lanes 3 and 4 showing the stem of E-31. Lanes 5 and 6 showing the root of E-31. B: the expression of RE-bw in stem of the resistant plants and susceptible plants under normal condition. Lanes 1 showing the stem of resistant plant E-31 (R). Lane 2 showing the stem of resistant plant E-32x E-31(F1 , R). Lane 3 showing the stem of susceptible plant E-32 (S). Lanes 4 and 6 showing the stem of resistant plant of E-32x E-31(F2) (R). Lanes 5 and 7 showing the the stem of susceptible plant of E-32 x E-31(F2) (S). C: the expression of RE-bw in stem of the resistant plants (E-31) after inoculation pathogen (R. solanacearum), Lanes 1 showing control. Lane 2 showing Expression of RE-bw after inoculation for 6 h. Lane 3 Expression of RE-bw after inoculation for 12 h. Lanes 4 Expression of RE-bw after inoculation for 24 h. Lanes 5 Expression of RE-bw after inoculation for 36 h. D: Expression of RE-bw in resistant plants (E-31) after treatment of 20 mg/L SA for different times. Lane1 showing 0 h; lane 2 showing treatment for 2 h; lane 3 showing treatment for 4 h; lane 4 showing treatment for 6 h; lane 5 showing treatment for 8 h. E: Expression of RE-bw in resistant plants (E-31) after treatment of 30 mg/L JA for different times. Lane1 showing 0 h; lane 2 showing treatment for 2 h; lane 3 showing treatment for 4 h; lane 4 showing treatment for 6 h; lane 5 showing treatment for 8 h. (GIF 10 kb)

High resolution image (TIFF 3559 kb)

Fig. S3

The Southern blotting analysis of RE-bw in resistant plant (E-31) genomic. ‘E-31′ genomic DNA was degested by BamHI, EcoRI and Hind III, XbaI and SacI, souther blotting revealed that two bands were detected in those DNA samples digested with BamH, EcoR I,Hind III, five hybridization signal bands were showed in those simple DNA digested with XbaIand Sac I (GIF 37 kb)

High resolution image (TIFF 7617 kb)

Fig. S4

Analysis of co-segregation of RE-bw in F2 of E-31× E-32. Lane 1: showing E-31(R), lane 2 showing E-32(S), lane 3 showing F1 ;lanes 4–136 showing the F2 segregation individuals of E-31× E-32. DNA was extracted by CTAB and digested with Hind III, Southern blotting was carried out in F2 segregation individuals, and RE-bw was used as probe. (GIF 343 kb)

High resolution image (TIFF 105263 kb)

Fig. S5

Detection of Southern blotting and expression of RE-bw in transgenic plant, RNAi pant and VIGS eggplant plant. A: Detection of southern blotting of RE-bw in transgenic tomato plant. Lane 1 showing non-transgenic plant, lane2 showing positive CK; lanes 3-7showing transgenic plants. B: Detection of expression of RE-bw in transgenic tomato. C: Detection of southern blotting of eggplant RE-bw RNAi plant. Lane 1 showing positive CK, lane 2 showing non-transgenic plant, lanes 3–6 showing transgenic RNAi plant. D: Detection of expression of RE-bw in RNAi eggplant. E: Detection of expression of RE-bw in VIGS eggplant. (GIF 60 kb)

High resolution image (TIFF 3255 kb)

Fig. S6

Analysis of SA level, PPO, POD and PAL activity. A:SA content after inoculation R.solanacearum. B:PPO activity after inoculation R.solanacearum. C:POD activity after inoculation R.solanacearum. D:PAL activity after inoculation R.solanacearum. Each sample time point for each treatment was comprised of three independent replicates. Least significant differences were calculated to compare the significance at the 5 % level using SPSS software (version 16.0). (GIF 99 kb)

High resolution image (TIFF 18851 kb)

Fig. S7

The expression qPCR analysis of nine signal genes in resistant eggplant (E-31) and RE- bw RNAi-4 eggplant plants after inoculation pathogen for different time. EDS1, PAD4, NPR1, SGT1, WRYK70 were increased with the addition of induction time, and their levels of expression were higher in resistant plants (E-31) than that of in RE-bw-RNAi-4 plant (S), but the levels of expression of JAR1, NDR1, EIN2, RAR1 were not significant different after both resistance and susceptibility plants were induced by inoculation pathogen. (GIF 111 kb)

High resolution image (TIFF 4495 kb)

11105_2014_814_MOESM8_ESM.doc

S1 Isolation of RE-bw sequence. a TDF sequence of RE-bw, b 5′ end sequence of RE-bw gene , c 3′ end sequence of RE-bw gene (DOC 22 kb)

Table S1

Primer for qPCR. (DOC 36 kb)

Table S2

The primers used in BiFC assay. (DOC 34 kb)

Table S3

Evaluation of BW-resistance in eggplant (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi’ou, X., Bihao, C., Guannan, L. et al. Functional Characterization of a Putative Bacterial Wilt Resistance Gene (RE-bw) in Eggplant. Plant Mol Biol Rep 33, 1058–1073 (2015). https://doi.org/10.1007/s11105-014-0814-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0814-1

Keywords

Navigation