Skip to main content
Log in

Seed-Specific Expression of AINTEGUMENTA in Medicago truncatula Led to the Production of Larger Seeds and Improved Seed Germination

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The increase of seed size is of great interest in Medicago spp., to improve germination, seedling vigour and, consequently, early forage yield as well as for optimizing seeding techniques and post-seeding management. This study evaluated the effects of the ectopic expression of the AINTEGUMENTA (ANT) cDNA from Arabidopsis thaliana, under the control of the seed-specific USP promoter from Vicia faba, on seed size, germination and seedling growth in barrel medic (Medicago truncatula Gaertn.). All the transgenic T2 barrel medic lines expressing ANT produced seeds significantly larger than those of control plants. Microscopic analysis on transgenic T3 mature seeds revealed that cotyledon storage parenchyma cells were significantly larger and contained larger storage vacuoles than those of the untransformed control. Moreover, the percentage of germination was significantly higher and germination was more rapid in transgenic than in control seeds. Our results indicate that the seed-specific expression of ANT in barrel medic led to larger seeds and improved seed germination, and revealed a regulatory role for ANT in controlling seed size development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bäumlein H, Boerjan W, Nagy I, Bassüner R, Van Montagu M, Inzé D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet 225:459–467

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437

    Article  PubMed  Google Scholar 

  • Beveridge JL, Wilsie CP (1959) Influence of depth of planting, seed size, and variety on emergence and seedling vigor in alfalfa. Agron J 51:731–734

    Article  Google Scholar 

  • Bingham E, Armour D, Irwin J, Jayaraman D, Ané JM (2009) Report on progress hybridizing herbaceous Medicago sativa and woody M. arborea. Medicago Genetic Reports. http://www.medicago-reports.org/. Accessed 17 Feb 2014

  • Bögre L, Magyar Z, López-Juez E (2008) New clues to organ size control in plants. Genome Biol 9:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Borrás L, Otegui ME (2001) Maize kernel weight response to post-flowering source-sink ratio. Crop Sci 49:1816–1822

    Article  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delaure SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Carleton AE, Cooper CS (1972) Seed size effects upon seedling vigor of three forage legumes. Crop Sci 2:183–186

    Article  Google Scholar 

  • Clough RC, Casal JJ, Jordan ET, Christou P, Vierstra RD (1995) Expression of functional oat phytochrome A in transgenic rice. Plant Physiol 109:1039–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Confalonieri M, Cammareri M, Biazzi E, Pecchia P, Fevereiro P, Balestrazzi A, Tava A, Conicella C (2009) Enhanced triterpene sapogenin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel ß–amyrin synthase (AsOXA1) gene. Plant Biotechnol J 7:172–182

    Article  CAS  PubMed  Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Cooper CS, Ditterline RL, Welty LE (1979) Seed size and seeding rate effects upon stand density and yield of alfalfa. Agron J 71:83–85

    Article  Google Scholar 

  • Cosson V, Durand P, d'Erfurth I, Kondorosi A, Ratet P (2006) Medicago truncatula transformation using leaf explants. Methods Mol Biol 343:115–127

    CAS  PubMed  Google Scholar 

  • Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi J-M, Rochat C, Boutin J-P (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566

    Article  CAS  PubMed  Google Scholar 

  • Dutta SK, Nema VK, Bhardwaj RK (1972) Physical properties of gram. J Agric Eng Res 12:128–137

    Google Scholar 

  • Easton LC, Kleindorfer S (2008) Germination in two Australian species of Frankenia L., F. serpyllifolia Lindl. and F. foliosa J. Black (Frankeniaceae). Effects of seed mass, seed age, light, and temperature. Trans R Soc S Aust 132:29–40

    Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Firnhaber C, Pühler A, Küster H (2005) EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222:269–283

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove JD (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Lesignor C, Darmency M, Burstin J, Thompson R, Rochat C, Boutin J-P, Kuester H, Buitink J, Leprince O, Limami A, Grusak MA (2006) Seed biology of Medicago truncatula. In: Mathesius U, Journet EP, Sumner LW (eds) The Medicago truncatula handbook. http://www.noble.org/MedicagoHandbook/. Accessed 17 Feb 2014

  • Garciarrubio A, Legaria JP, Covarrubias A (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203:182–187

    Article  CAS  PubMed  Google Scholar 

  • Gardarin A, Dürr C, Colbach N (2011) Prediction of germination rates of weed species: relationships between germination speed parameters and species traits. Ecol Model 222:626–636

    Article  Google Scholar 

  • Gjuric R, Smith SR (1997) Inheritance in seed size of alfalfa: quantitative analysis and response to selection. Plant Breed 116:337–340

    Article  Google Scholar 

  • Glevarec G, Bouton S, Jaspard E, Riou M-T, Cliquet J-B, Suzuki A, Limami AM (2004) Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219:286–297

    Article  CAS  PubMed  Google Scholar 

  • Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in Pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729

    Article  CAS  PubMed  Google Scholar 

  • Haas TJ, Thomas EM (2004) Survey of seeds per gram of individual alfalfa plants. Medicago Genetic Reports. http://www.medicago-reports.org/. Accessed 17 Feb 2014

  • Hansen B (1989) Determination of nitrogen as elementary N, an alternative to Kjeldhal. Acta Agric Scand 39:113–118

    Article  CAS  Google Scholar 

  • Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356

    Article  Google Scholar 

  • Hojjat SS (2011) Effects of seed size on germination and seedling growth of some Lentil genotypes (Lens culinaris Medik.). Int J Agric Crop Sci 3:1–5

    Google Scholar 

  • Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703–716

    Article  CAS  PubMed  Google Scholar 

  • Johnson K, Lenhard M (2011) Genetic control of plant organ growth. New Phytol 191:319–333

    Article  PubMed  Google Scholar 

  • Jurado E, Westoby M (1992) Germination biology of selected central Australian plants. Aust J Ecol 17:341–348

    Article  Google Scholar 

  • Kiniry JR, Wood CA, Spanel DA, Bockholt AJ (1990) Seed weight response to decreased seed number in maize. Agron J 54:98–102

    Article  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology, and phenotype. Ann Bot 95:177–190

    Article  CAS  PubMed  Google Scholar 

  • Koelewijn HP, Van Damme JMM (2005) Effects of seed size, inbreeding and maternal sex on the offspring performance of gynodioecious Plantago coronopus. J Ecol 93:373–383

    Article  Google Scholar 

  • Krannitz PG, Aarssen LW, Dow JM (1991) The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae). Am J Bot 78:446–450

    Article  Google Scholar 

  • Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224–236

    Article  CAS  PubMed  Google Scholar 

  • Krizek BA, Eaddy M (2012) AINTEGUMENTA-LIKE6 regulates cellular differentiation in flowers. Plant Mol Biol 78:199–209

    Article  CAS  PubMed  Google Scholar 

  • Kuluev BR, Knyazev AV, Iljassowa AA, Chemeris AV (2012) Ectopic expression of the PnANTL1 and PnANTL2 black poplar genes in transgenic tobacco plants. Russ J Genet 48(10):993–1000

    Article  CAS  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leishman MR (2001) Does the seed size⁄number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294–302

    Article  Google Scholar 

  • Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds—the ecology of regeneration in plant communities. CAB International, Wallingford, pp 31–57

    Chapter  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  CAS  PubMed  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:1–10

    Article  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci U S A 97:942–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  CAS  PubMed  Google Scholar 

  • Orsi CH, Tanksley SD (2009) Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet. doi: 10.1371/journal.pgen.1000347

  • Pay A, Heberle-Bors E, Hirt H (1992) An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein. Plant Mol Biol 19:501–503

    Article  CAS  PubMed  Google Scholar 

  • Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L, Scotti C, Carelli M, Scaramelli L, Bruschi G, Cosson V, Ratet P, de Larambergue H, Duc G, Piano E, Arcioni S (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Rao SK (1981) Influence of seed size on field germination, seedling vigour, yield and quality in self pollinated crops—a review. Agric Rev 2:95–101

    Google Scholar 

  • Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rotili P, Gnocchi G, Scotti C, Zannone L (1999) Some aspects of breeding methodology in alfalfa. In: Proceedings of The Alfalfa Genome Conference, Madison, WI, USA, www.naaic.org/TAG/TAGpapers/rotili/rotili.html. Accessed 17 Feb 2014

  • Saalbach I, Giersberg M, Conrad U (2001) High-level expression of a single chain Fv fragment (scFv) antibody in transgenic pea seeds. J Plant Physiol 158:529–533

    Article  CAS  Google Scholar 

  • Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M (2009) Production of transgenic barrel medic (Medicago truncatula Gaertn.) using the ipt-type MAT vector system and impairment of recombinase-mediated excision events. Plant Cell Rep 2:197–211

    Article  Google Scholar 

  • Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249

    Article  CAS  PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  CAS  PubMed  Google Scholar 

  • Scotti C, Gnocchi G (2004) Seed size and fertility relationships of WI643 alfalfa grown at Lodi, Italy. Medicago Genetic Reports. http://www.medicago-reports.org/. Accessed 17 Feb 2014

  • Simons AM, Johnston MO (2000) Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. Am J Bot 87:124–132

    Article  CAS  PubMed  Google Scholar 

  • Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13–25

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Shantharaj D, Kang X, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • Tanska M, Konopka M, Rotkiewicz D (2008) Relationships of rapeseed strength properties to seed size, colour and coat fibre composition. J Sci Food Agric 88:2186–2193

    Article  CAS  Google Scholar 

  • Tan-Wilson AL, Wilson KA (2012) Mobilization of seed protein reserves. Physiol Plant 145:140–153

    Article  CAS  PubMed  Google Scholar 

  • Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  • Van Daele I, Gonzalez N, Vercauteren I, de Smet L, Inzé D, Roldán-Ruiz I, Vuylsteke M (2012) A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant Biotechnol J 10:488–500

    Article  PubMed  Google Scholar 

  • Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T, Manteuffel R, Bäumlein H (2009) The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol Biol 71:319–329

    Article  CAS  PubMed  Google Scholar 

  • Venable DL (1992) Size-number trade-offs and the variation of seed size with plant resource status. Am Nat 140:287–304

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wu GL, Du GZ (2007) Germination is related to seed mass in grasses (Poaceae) of the eastern Qinghai-Tibetan Plateau, China. Nord J Bot 25:361–365

    Article  Google Scholar 

  • Yi CX, Zhang J, Chan KM, Liu XK, Hong Y (2008) Quantitative real-time PCR assay to detect transgene copy number in cotton (Gossypium hirsutum). Anal Biochem 375:150–152

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zakharov A, Giersberg M, Hosein F, Melzer M, Müntz K, Saalbach I (2004) Seed-specific promoters direct gene expression in non-seed tissue. J Exp Bot 55:1463–1471

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stefania Barzaghi for the seed image analysis and Dr. Luciano Pecetti for the critical reading of the manuscript. We are grateful to Francesco Lascala, Massimo Sari and Annalisa Seminari (CRA-FLC, Lodi) and Giancarlo Carpinelli and Marco Guaragno (CNR-IGV, Perugia) for the excellent technical assistance. The scientific support of Dr. Efisio Piano (CRA-FLC, Lodi) and Dr. Sergio Arcioni (CNR-IGV, Perugia) during the completion of the project is greatly acknowledged. The research was supported by funds from “Programma di ricerca speciale: Incremento della Produzione di Proteine Vegetali per l’Alimentazione Zootecnica (legge 49/2001)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Confalonieri.

Additional information

M. Confalonieri and M. Carelli contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 37.0 kb)

ESM 2

(DOC 37.0 kb)

ESM 3

(DOC 35.0 kb)

ESM 4

(DOC 39.0 kb)

ESM 5

(DOC 39.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Confalonieri, M., Carelli, M., Galimberti, V. et al. Seed-Specific Expression of AINTEGUMENTA in Medicago truncatula Led to the Production of Larger Seeds and Improved Seed Germination. Plant Mol Biol Rep 32, 957–970 (2014). https://doi.org/10.1007/s11105-014-0706-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0706-4

Keywords

Navigation