Skip to main content
Log in

Molecular Cloning and Expression Analysis of Nine ThTrx Genes in Tamarix hispida

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Thioredoxins are small conserved proteins that play key roles in the oxidative stress response. In this study, nine Trx genes, including five Trxhs, three Trxms, and one Trx-like gene, were cloned from Tamarix hispida. The roles of these ThTrx genes were investigated under various abiotic stress conditions. Expression profiles of the nine ThTrx genes in response to different abiotic stresses in leaf and root tissues were constructed using quantitative real time-polymerase chain reaction. Differential expression of all nine ThTrx genes was observed (>2-fold) in response to NaCl, PEG, or CdCl2 stress in at least one tissue, indicating that all of these genes act in abiotic stress responses. All ThTrx genes were induced (>2-fold) by abscisic acid (ABA) treatment in the leaves and especially in the roots, suggesting that ABA-dependent signaling pathways regulate ThTrxs. These results demonstrate that ThTrx expression constitutes an adaptive response to abiotic stress in T. hispida and plays an important role in abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumann U, Juttner J (2002) Plant thioredoxins: the multiplicity conundrum. Cell Mol Life Sci 59:1042–1057

    Article  PubMed  CAS  Google Scholar 

  • Broin M, Cuiné S, Eymery F, Rey P (2002) The plastidic 2-cysteine peroxyredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14:1417–1432

    Article  PubMed  CAS  Google Scholar 

  • Broin M, Cuiné S, Peltier G, Rey P (2000) Involvement of CDSP32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248

    Article  PubMed  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione and thioredoxin dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  PubMed  CAS  Google Scholar 

  • Chibani K, Tarrago L, Schürmann P, Jacquot JP, Rouhier N (2011) Biochemical properties of poplar thioredoxin z. FEBS Lett 585:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N (2009) Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant 2:308–322

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Yang C, Jiang J, Li H (2008) Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol 66:245–258

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2004) The thioredoxin h system of higher plants. Plant Physiol Bioch 42:265–271

    Article  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  PubMed  CAS  Google Scholar 

  • Jin HX, Huang F, Cheng H, Song HN, Yu DY (2012) Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep. doi:10.1007/s11105-012-0514-7

  • Kocsy G, Kobrehel K, Szalai G, Duviau MP, Buzás Z, Galiba G (2004) Abiotic stress-induced changes in glutathione and thioredoxin h levels in maize. Environ Exp Bot 52:101–112

    Article  CAS  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Lemaire S, Keryer E, Stein M, Schepens I, Issakidis-Bourguet E, GérardHirne C, Miginiac-Maslow M, Jacquot JP (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543:87–92

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang Y, Jiang J, Liu G, Gao C, Yang C (2009) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433:65–71

    Article  PubMed  CAS  Google Scholar 

  • Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010) Transgenic barley with overexpressed Trx increases aluminum resistance in roots during germination. J Zhejiang Univ Sci B 11:862–870

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mestres-Ortega D, Meyer Y (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240(2):307–316

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Method Enzymol 347:394–402

    Article  CAS  Google Scholar 

  • Mouaheb N, Thomas D, Verdoucq L, Monfort P, Meyer Y (1998) In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:3312–3317

    Article  PubMed  CAS  Google Scholar 

  • Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Bioph Res Co 423:417–423

    Article  CAS  Google Scholar 

  • Prabu G, Kawar PG, Pagariya MC, Prasad DT (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Rep 29:291–304

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H (2010) An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact 23:1470–1485

    Article  PubMed  CAS  Google Scholar 

  • Tarrago L, Laugier E, Zaffagnini M, Marchand CH, Le Marechal P, Lemaire SD, Rey P (2010) The plant thioredoxin CDSP32 regenerates 1-CYS methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J Biol Chem 285:14964–14972

    Article  PubMed  CAS  Google Scholar 

  • Wu LQ, Ge Q, Zhang JQ, Zhou JJ, Xu J (2012) Proteomic analysis of Cd-responsive proteins in Solanum torvum. Plant Mol Biol Rep. doi:10.1007/s11105-012-0515-6

  • Yang ZJ, Peng ZS, Yang H, Yang J, Wei SH, Cai P (2011) Suppression subtractive hybridization identified differentially expressed genes in pistil mutations in wheat. Plant Mol Biol Rep 29:431–439

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31100486) and the Central University Basic Scientific Business Specific Foundation (Grant no. DL11EA02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Kai-long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui-yu, L., Kun, N., Xin, S. et al. Molecular Cloning and Expression Analysis of Nine ThTrx Genes in Tamarix hispida . Plant Mol Biol Rep 31, 917–924 (2013). https://doi.org/10.1007/s11105-013-0560-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0560-9

Keywords

Navigation