Skip to main content
Log in

Expression Analysis of Defense-Related Genes in Cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum Infection and Following Chemical Elicitation using a Salicylic Acid Analog and Methyl Jasmonate

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cotton (Gossypium hirsutum) wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is considered as a major threat for commercial cotton production worldwide. Relative expression ratios of two key pathogenesis-related (PR) genes (PR-3 and PR-10) and a detoxification gene (GST18) were compared between a fully susceptible (“LACTA”) and a partially field-resistant (“EMERALD”) cultivar after challenging with an Australian Fov isolate, as well as after pre-treatments with chemical inducers of defense such as BION® (a chemical analog of salicylic acid) and methyl-jasmonate (MeJA) prior to Fov inoculation. It was demonstrated that in both hypocotyls and roots of “EMERALD”, all PR genes were over-expressed after inoculation with Fov but not in the fully susceptible cultivar. Fov inoculation did not significantly affect GST18 expression in both cultivars. Exogenous application of each defense elicitor, prior to Fov inoculation, resulted in up-regulation of the three genes in root tissues of the fully susceptible cultivar. BION® application did not influence PR-3 expression in hypocotyls of both cultivars, whereas MeJA application resulted in induction of PR-3 in both cultivars. Furthermore, in hypocotyls of “LACTA”, over-expression of PR-10 was recorded after treatment with each chemical inducer. This pathogen exhibited different ability in eliciting oxidative burst in roots of the two cotton cultivars used in our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo-Elyousr KAM, Hashem M, Ali EH (2009) Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Prot 28(4):295–301

    Article  CAS  Google Scholar 

  • Ali M, Hahn E, Paek K (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12(3):607–621

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92(6):773–784

    Article  PubMed  CAS  Google Scholar 

  • Alvarez S, Zhu M, Chen S (2009) Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. J Proteomics 73(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42(6):871–881

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  PubMed  CAS  Google Scholar 

  • Barthelson R, Qaisar U, Galbraith D (2010) Functional analysis of the Gossypium arboreum genome. Plant Mol Biol Rep 28(2):334–343

    Article  CAS  Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17(7):763–770

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2008) Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci 13(3):145–150

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Malinovsky FG, Hematy K, Newman MA, Mundy J (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol 138(2):1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Davis RD, Moore NY, Kochman JK (1996) Characterisation of a population of Fusarium oxysporum f sp vasinfectum causing wilt of cotton in Australia. Aust J Agric Res 47(7):1143–1156

    Article  Google Scholar 

  • Davis JM, Wu HG, Cooke JEK, Reed JM, Luce KS, Michler CH (2002) Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. Mol Plant Microbe Interact 15(4):380–387

    Article  PubMed  CAS  Google Scholar 

  • Davis RM, Colyer PD, Rothrock CS, Kochman JK (2006) Fusarium wilt of cotton: population diversity and implication for management. Plant Dis 90(6):692–703

    Article  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56(416):1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Demetriou K, Kapazoglou A, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in Barley: II. Characterization and expression analysis of the HDA1 family of Barley histone deacetylases during development and in response to Jasmonic acid. Plant Mol Biol Rep 28(1):9–21

    Article  CAS  Google Scholar 

  • Desmond OJ, Edgar CI, Manners JM, Maclean DJ, Schenk PM, Kazan K (2005) Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol 67(3–5):171–179

    Article  CAS  Google Scholar 

  • Dong XN (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1(4):316–323

    Article  PubMed  CAS  Google Scholar 

  • Dowd C, Wilson LW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp vasinfectum. Mol Plant Microbe Interact 17(6):654–667

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk PM, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australas Plant Pathol 35(6):581–591

    Article  CAS  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Frova C (2003) The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol Plantarum 119(4):469–479

    Article  CAS  Google Scholar 

  • Garrido I, Espinosa F, Córdoba-Pedregosa MC, González-Reyes JA, Alvarez-Tinaut MC (2003) Redox-related peroxidative responses evoked by methyl-jasmonate in axenically cultured aeroponic sunflower (Helianthus annuus L.) seedling roots. Protoplasma 221(1):079–091

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gozzo F (2003) Systemic acquired resistance in crop protection: from nature to a chemical approach. J Agric Food Chem 51(16):4487–4503

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R (2009) Chapter 5 systemic acquired resistance. In: Loon LCV (ed) Advances in botanical research, vol 51. Academic, Burlington, pp 173–222

    Google Scholar 

  • Herbette S, Lenne C, de Labrouhe DT, Drevet JR, Roeckel-Drevet P (2003) Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol Plantarum 119(3):418–428

    Article  CAS  Google Scholar 

  • Hill MK, Lyon KJ, Lyon BR (1999) Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol 40(2):289–296

    Article  PubMed  CAS  Google Scholar 

  • Hwang H-J, Kim H, Yu H-J, Oh M-H, Lee I, Kim S-G (2003) Gene encoding pathogenesis-related 10 protein of Lithospermum erythrorhizon is responsive to exogenous stimuli related to the plant defense system. Plant Sci 165(6):1297–1302

    Article  CAS  Google Scholar 

  • Jacobs, Dry, Robinson (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathol 48(3):325–336

    Article  CAS  Google Scholar 

  • Jellouli N, Ben Jouira H, Daldoul S, Chenennaoui S, Ghorbel A, Ben Salem A, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28(1):1–8

    Article  CAS  Google Scholar 

  • Johansson A, Staal J, Dixelius C (2006) Early responses in the ArabidopsisVerticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol Plant Microbe Interact 19(9):958–969

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  PubMed  CAS  Google Scholar 

  • Jwa NS, Agrawal GK, Rakwal R, Park CH, Agrawal VP (2001) Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 286(5):973–983

    Article  PubMed  CAS  Google Scholar 

  • Kachroo A, Kachroo P (2007) Salicylic acid-, Jasmonic acid- and ethylene mediated regulation of plant defense signaling. In: Setlow JK (ed) Genetic engineering, vol 28. Genetic Engineering. Springer, US, pp 55–83

    Chapter  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146(4):1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Staskawicz B, Jones JDG, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28(4):365–369

    Article  PubMed  CAS  Google Scholar 

  • Li D-M, Staehelin C, Wang W-T, Peng S-L (2010) Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Mol Biol Rep 28(1):90–101

    Article  CAS  Google Scholar 

  • Lieberherr D, Wagner U, Dubuis PH, Metraux JP, Mauch F (2003) The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. Plant Cell Physiol 44(7):750–757

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Gaudet DA, Frick M, Puchalski B, Genswein B, Laroche A (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. J Biochem Mol Biol 38(4):420–431

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25(2):79–82

    Article  PubMed  CAS  Google Scholar 

  • McFadden HG, Chapple R, de Feyter R, Dennis E (2001) Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol 58(3):119–131

    Article  CAS  Google Scholar 

  • McGhee JD, Hamer JE, Hodges TK (2001) Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol Plant Microbe Interact 14(7):877–886

    Article  Google Scholar 

  • Meng X, Li F, Liu C, Zhang C, Wu Z, Chen Y (2010) Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Mol Biol Rep 28(1):176–183

    Article  CAS  Google Scholar 

  • Morkunas I, Gmerek J (2007) The possible involvement of peroxidase in defense of yellow lupine embryo axes against Fusarium oxysporum. J Plant Physiol 164(2):185–194

    Article  PubMed  CAS  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24(6):954–958

    PubMed  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  PubMed  CAS  Google Scholar 

  • Nishimura MT, Dangl JL (2010) Arabidopsis and the plant immune system. Plant J 61(6):1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Niskanen R, Dris R (2004) Pathogenesis-related proteins—an important group of plant-derived allergens. Food, Agr Environ 2(2):12–24

    Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13(4):430–438

    Article  PubMed  CAS  Google Scholar 

  • Öztetik E (2008) A tale of plant glutathione S-transferases: since 1970. Bot Rev 74(3):419–437

    Article  Google Scholar 

  • Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37(2):186–198

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9)

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates—signals in plant–microbe interactions. J Plant Growth Reg 23(3):211–222

    CAS  Google Scholar 

  • Rakwal R, Yang GX, Komatsu S (2004) Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol Biol Rep 31(2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12(4):459–464

    Article  PubMed  CAS  Google Scholar 

  • Shinya T, Hanai K, Gális I, Suzuki K, Matsuoka K, Matsuoka H, Saito M (2007) Characterization of NtChitIV, a class IV chitinase induced by [beta]-1,3-, 1,6-glucan elicitor from Alternaria alternata 102: antagonistic effect of salicylic acid and methyl jasmonate on the induction of NtChitIV. Biochem Biophys Res Commun 353(2):311–317

    Article  PubMed  CAS  Google Scholar 

  • Sohn S, Kim Y, Kim B, Lee S, Lim CK, Hur JH, Lee J (2007) Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. Mol Cells 24(2):232–239

    PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3(6):348–351

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104(47):18842–18847

    Article  PubMed  CAS  Google Scholar 

  • Thomma B, Penninckx I, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11(6):1187–1194

    Article  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37(10):1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Van Hemelrijck W, Wouters PFW, Brouwer M, Windelinckx A, Goderis I, De Bolle MFC, Thomma B, Cammue BPA, Delaure SL (2006) The Arabidopsis defense response mutant esa1 as a model to discover novel resistance traits against Fusarium diseases. Plant Sci 171(5):585–595

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it's the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49(5):515–532

    Article  PubMed  CAS  Google Scholar 

  • Wen Y-J, He H-W, Huang Q-S, Liang S, Bin J-H (2008) Roles of pathogenesis-relative protein 10 in plant defense response. Plant Physiol Comm 44(3):585–592

    CAS  Google Scholar 

  • Whan JA, Dann EK, Smith LJ, Aitken EAB (2009) Acibenzolar-S-methyl-induced alteration of defence gene expression and enzyme activity in cotton infected with Fusarium oxysporum f. sp. vasinfectum. Physiol Mol Plant Pathol 73(6):175–182

    Article  Google Scholar 

  • Xu Y, Zhu Q, Panbangred W, Shirasu K, Lamb C (1996) Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L). Plant Mol Biol 30(3):387–401

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (2001) Production of 6-methylsalicyclic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13(6):1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Rahman M, Liang Y, Shah S, Kav N (2010) Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep 28(2):253–263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the General Secretariat for Research and Technology (GSRT, program PENED 10087), Greece. We thank S. ANDRIOTIS S.A. for providing “EMERALD” seeds, Mr. W. O' Neill (Department of Primary Industries, Indooroopilly, Queensland, Australia) for providing the Australian Fov isolates and P.A L. Dadurian for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios S. Tsaftaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambounis, A.G., Kalamaki, M.S., Tani, E.E. et al. Expression Analysis of Defense-Related Genes in Cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum Infection and Following Chemical Elicitation using a Salicylic Acid Analog and Methyl Jasmonate. Plant Mol Biol Rep 30, 225–234 (2012). https://doi.org/10.1007/s11105-011-0335-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0335-0

Keywords

Navigation