Skip to main content
Log in

Molecular Cloning and Expression Analysis of 13 MADS-Box Genes in Betula platyphylla

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

MADS-box genes encode a family of transcription factors that control a diverse range of processes in flowering plants. In this study, 13 unique MADS genes were cloned from Betula platyphylla Suk., and 2-year-old Betula seedlings propagated in glasshouses were selected as plant materials. The expression profile of each BpMADS was investigated during the growth season and following gibberellin (GA) treatments by real-time quantitative reverse transcription polymerase chain reaction. The relative abundance of the 13 BpMADS was shown to differ during each month, indicating that the activity of the genes varies during the annual growing period. Expression analyses demonstrated that these BpMADS were regulated by GA signaling pathways. Furthermore, the variations in expression patterns suggest that the genes act independently to fulfill specific functions or act cooperatively in physiological processes. The study of birch MADSs is important for the purposes of improving breeding techniques and molecular biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24(4):457–466

    Article  PubMed  CAS  Google Scholar 

  • An XM, Ye MX, Wang DM, Wang ZL, Cao GL, Zheng HQ, Zhang ZY (2011) Ectopic expression of a poplar APETALA3-like genein tobacco causes early flowering and fast growth. Biotechnol Lett. doi:10.1007/s10529-011-0545-4

  • Atkinson MD (1992) Biological flora of the British Isles: Betula pendula Roth (B. 6errucosa Ehrh.) and B. pubescens Ehrh. J Ecol 80:837–870

    Article  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416(6883):847–850

    Article  PubMed  CAS  Google Scholar 

  • Brunner AM, Rottmann WH, Sheppard LA, Krutovskii K, DiFazio SP, Leonardi S, Strauss SH (2000) Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol 44(5):619–634

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131(5):1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Jang S, Chae S, Chung KM, Moon YH, An G, Jang SK (1999) Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol 40(3):419–429

    Article  PubMed  CAS  Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18(19):5370–5379

    Article  PubMed  CAS  Google Scholar 

  • Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H (2010) The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot 61(5):1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant 131(1):149–158

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang C (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Report 28(1):77–89

    Article  Google Scholar 

  • Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59(14):3821–3829

    Article  PubMed  CAS  Google Scholar 

  • Hou JH, Gao ZH, Zhang Z, Chen SM, Ando TS, Zhang JY, Wang XW (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese Apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Report 29(2):473–480

    Article  CAS  Google Scholar 

  • King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM (2006) Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol 141(2):498–507

    Article  PubMed  CAS  Google Scholar 

  • Little CH, MacDonald JE (2003) Effects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca. Tree Physiol 23:73–83

    PubMed  CAS  Google Scholar 

  • Liu XM, Yang CP (2006) Temporal characteristics of developmental cycles of female and male flowers in Betula platyphylla in northeastern China. Scientia Silvae Sinicae 142(12):28–32

    Google Scholar 

  • Liu X, Anderson JM, Pijut PM (2010) Cloning and characterization of Prunus serotina AGAMOUS, a putative flower homeotic gene. Plant Mol Biol Report 28(2):193–203

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Losa A, Colombo M, Brambilla V, Colombo L (2010) Genetic interaction between AINTEGUMENTA (ANT) and the ovule identity genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2). Sex Plant Reprod 23(2):115–121

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46(2):292–299

    Article  PubMed  CAS  Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Nat Acad Sci USA 94(6):2415–2420

    Article  PubMed  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60(7):1979–1989

    Article  PubMed  Google Scholar 

  • Nakamura T, Song IJ, Fukuda T, Yokoyama J, Maki M, Ochiai T, Kameya T, Kanno A (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J Plant Res 118(3):229–234

    Article  PubMed  CAS  Google Scholar 

  • Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manage 32:1–38

    Article  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85–88

    Article  PubMed  CAS  Google Scholar 

  • Remay A, Lalanne D, Thouroude T, Le Couviour F, Hibrand-Saint Oyant L, Foucher F (2009) A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theor Appl Genet 119(5):767–781

    Article  PubMed  CAS  Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20(9):2420–2436

    Article  PubMed  CAS  Google Scholar 

  • Roberts AV, Blake PS, Lewis R, Taylor JM, Dunstan DI (1999) The effect of gibberellins on flowering in roses. J Plant Growth Regul 18(3):113–119

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125(3):1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Song JJ, Ma W, Tang YJ, Chen ZY, Liao JP (2010) Isolation and characterization of three MADS-box genes from Alpinia hainanensis (Zingiberaceae). Plant Mol Biol Report 28(2):264–276

    Article  CAS  Google Scholar 

  • Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15(11):2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wang YC, Diao GP, Jiang J, Yang CP (2010) Isolation and characterization of expressed sequence tags (ESTs) from cambium tissue of birch (Betula platyphylla Suk.). Plant Mol Biol Report 28(3):438–449

    Article  Google Scholar 

  • Wang S, Jiang J, Li TF, Li HY, Wang C, Wang YC, Liu GF (2011) Influence of nitrogen, phosphorus, and potassium fertilization on flowering and expression of flowering-associated genes in white birch (Betula platyphylla Suk.). Plant Mol Biol Report. doi:10.1007/s11105-010-0281-2

  • Wei ZG, Zhang KX, Yang CP, Liu GF, Liu GJ, Lian L, Zhang HG (2010) Genetic linkage maps of Betula platyphylla Suk based on ISSR and AFLP markers. Plant Mol Biol Report 28(1):169–175

    Article  CAS  Google Scholar 

  • Xu J, Zhong X, Zhang Q, Li H (2010) Overexpression of the GmGAL2 gene accelerates flowering in Arabidopsis. Plant Mol Biol Report 28(4):704–711

    Article  CAS  Google Scholar 

  • Zhao HJ, Dong JL, Tao Wang T (2010) Function and expression analysis of gibberellin oxidases in apple. Plant Mol Biol Report 28(2):231–238

    Article  CAS  Google Scholar 

  • Zobell O, Faigl W, Saedler H, Münster T (2010) MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Mol Biol Evol 27(5):1201–1211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Forestry Department Public Benefit Research Foundation of China (200904039) and Central University Basic Scientific Business Specific Foundation (Grant No. DL09BA22)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hy., Liu, Ff., Liu, Gf. et al. Molecular Cloning and Expression Analysis of 13 MADS-Box Genes in Betula platyphylla . Plant Mol Biol Rep 30, 149–157 (2012). https://doi.org/10.1007/s11105-011-0326-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0326-1

Keywords

Navigation