Skip to main content
Log in

Isolation and Partial Characterization of an R2R3MYB Transcription Factor from the Bamboo Species Fargesia fungosa

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Formation of the woody stems of bamboo requires the coordinated regulation of cellulose, xylan, and lignin biosynthesis. Lignin contributes 25–30% of harvested bamboo constituents, and it strongly influences the physical properties of bamboo. In this study, we report on cloning and partial characterization of an R2R3MYB transcription factor gene (FfMYB1) from the bamboo species Fargesia fungosa. FfMYB1 consists of a coding region of 813 bp, corresponding to a predicted peptide of 270 amino acids, and an upstream promoter sequence of 1.46 kb. The deduced peptide sequence of FfMYB1 has the highest percent amino acid identity to NtMYBGR1 of tobacco, as well as to both AtMYB20 and AtMYB43 of Arabidopsis. Both NtMYBGR1 and AtMYB20/43 are putative activators of the phenylpropanoid pathway for lignin production. Histochemical analysis of F. fungosa stems showed rapid production of lignin during stem maturation, and FfMYB1 transcript was detected in leaves and stems of 1-year old shoots. A phylogenetic study of R2R3MYB sequences available for the bamboo subfamily identified other potential lignin-related R2R3MYBs, in particular bphylf044c24 of the bamboo genera Phyllostachys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bailey PC, Dicks J, Wang TL, Martin C (2008) IT3F: a web-based tool for functional analysis of transcription factors in plants. Phytochemistry 69:2417–2425

    Article  PubMed  CAS  Google Scholar 

  • Bi C, Chen F, Jackson L, Gill BS, Li W (2011) Expression of lignin biosynthetic genes in wheat during development and upon infection by fungal pathogens. Plant Mol Biol Report 29:149–161

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • El-Shehawi AM, Elseehy MM, Hedgcoth C (2011) Isolation and sequence analysis of wheat tissue-specific cDNAs by differential display. Plant Mol Biol Report 29:135–148

    Article  CAS  Google Scholar 

  • Fengel D, Shao X (1985) Studies on the lignin of the bamboo species Phyllostachys makinoi Hay. Weed Sci Tech 19:131–137

    Article  CAS  Google Scholar 

  • Fornale S, Shi XH, Chai CL, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomenech P, Rigau J, Grotewold E, Gray J, Caparros-Ruiz D (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Schatz PF, Kim H, Lu FC, Ralph J (2010) Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biol 10:114

    Article  PubMed  Google Scholar 

  • Gritsch CS, Kleist G, Murphy RJ (2004) Developmental changes in cell wall structure of phloem fibers of the bamboo Dendrocalamus asper. Ann Bot 94:497–505

    Article  PubMed  Google Scholar 

  • Hunter DA, Steele BC, Reid MS (2002) Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Plant Sci 163:13–21

    Article  CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry—principles and practices. W.H. Freeman and Company, San Francisco, University of California, Berkley

    Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  PubMed  CAS  Google Scholar 

  • Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Seguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Lin J, He X, Hu Y, Kuang T, Ceulemans R (2002) Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems. Physiol Plant 114:296–302

    Article  PubMed  CAS  Google Scholar 

  • Lin XC, Chow TY, Chen HH, Liu CC, Chou SJ, Huang BL, Kuo CI, Wen CK, Huang LC, Fang W (2010) Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res 9:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Liu NT, Wu FH, Tsay HS, Chang WC, Lin CS (2008) Establishment of a cDNA library from Bambusa edulis Murno in vitro-grown shoots. Plant Cell Tissue Organ Cult 95:21–27

    Article  CAS  Google Scholar 

  • Lybeer B, Koch G, van Acker J, Goetghebeur P (2006) Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann Bot 97:529–539

    Article  PubMed  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  Google Scholar 

  • McCarthy RL, Zhong RQ, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye ZH (2010) The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol 51:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  PubMed  CAS  Google Scholar 

  • Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11:681

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Lu T, Li L, Liu X, GaoZ HuT, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116

    Article  PubMed  Google Scholar 

  • Rai V, Ghosh JS, Pal A, Dey N (2011) Identification of genes involved in bamboo fiber development. Gene 478:19–27

    Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19:229–244

    Article  CAS  Google Scholar 

  • Shinya T, Gális I, Narisawa T, Sasaki M, Fukuda H, Matsuoka H, Saito M, Matsuoka K (2007) Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism. Plant Cell Physiol 48:1404–1413

    Article  PubMed  CAS  Google Scholar 

  • Sonbol F-M, Fornalé S, Capellades M, Encina A, Touriño S, Torres J-L, Rovira P, Ruel K, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70:283–296

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wang Y, Diao G, Jiang J, Yang C (2010) Isolation and characterization of expressed sequence tags (ESTs) from cambium tissue of birch (Betula platyphylla Suk). Plant Mol Biol Report 28:438–449

    Article  Google Scholar 

  • Zhong R, Ye Z-H (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 11:1028–1034

    Article  Google Scholar 

  • Zhong R, Demura T, Ye Z-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye Z-H (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  PubMed  CAS  Google Scholar 

  • Zhong RQ, Lee CH, Ye ZH (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci 15:625–632

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Chan L, Zhong R, Ye Z-H (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  PubMed  CAS  Google Scholar 

  • Zhou MB, Yang P, Gao PJ, Tang DQ (2011) Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Mol Biol Report 29:224–231

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from 948 Project of the Ministry of Forestry of China (Grant 2008-4-30), the National Basic Research Program of China 973 Program (Grant 2010CB434807), the Science and Technology Planning Project of Yunnan Province (Grant 2009CD073), and the Middle Aged Academic and Technical Leader Project of Yunnan Province (Grant 2010CI016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Davies.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Phylogenetic relationship of FfMYB1, NtMYBGR1, and 49 P. heterocycla R2R3MYB ESTs to the A. thaliana R2R3MYB transcription factors. The full-length deduced amino acid sequence of FfMYB1 and NtMYBGR1 and the available sequences for the P. heterocycla ESTs were entered into the IT3F web-based comparison tool (Bailey et al. 2008) and a phylogenetic tree was formed against the A. thaliana and O. sativa R2R3MYB sequences (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, J., Zhang, H. et al. Isolation and Partial Characterization of an R2R3MYB Transcription Factor from the Bamboo Species Fargesia fungosa . Plant Mol Biol Rep 30, 131–138 (2012). https://doi.org/10.1007/s11105-011-0319-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0319-0

Keywords

Navigation