Skip to main content
Log in

In Silico and Quantitative Analyses of MADS-Box Genes in Coffea arabica

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

MADS-box genes comprise a family of transcription factors that act as key regulators in many cellular development processes of several organisms. Members of this family have highly conserved regions and play important roles as transcription factors, activating target genes. The present work aimed at analyzing the MADS-box gene family present in a database generated by the Brazilian Coffee Genome Project (CAFEST) as well as of observing their respective sites of expression within these data. Through the use of bioinformatics tools, it was possible to identify and classify 26 expressed sequence tag contigs, 13 of them were expressed exclusively in vegetative tissues, 11 in reproductive tissues, and two in both. Later, quantitative analysis by quantitative reverse transcriptase PCR was carried out for three of them belonging to the groups of genes APETALA3 (B genes), AGAMOUS (C genes), and SEPALLATAS (E genes), which could be compared with the expression profile of in silico analysis and of its putative orthologous genes. Therefore, this study aims at a better understanding of the development processes performed by this family of genes in Coffea arabica, mainly in reproductive organs, as well as to compare functions of MADS-box orthologous studied in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST, PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martinez-Castilla L, Yanofsk MF (2000a) An ancestral MADS-box gene duplication occurred before the divergence of plants, animals. PNAS 97:5328–5333

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsk MF (2000b) MADS-box gene evolution beyond flower: expression in pollen endosperm grand cells roots, trichomes. Plant J 24:457–466

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plants Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceeding of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI, Menlo Park, pp 28–36

    Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes, their role in the development, evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Birtic S, Kranner I (2006) Isolation of high-quality RNA from polyphenol- polysaccharide-, lipid-rich seeds. Phytochem Anal 17:144–148

    Article  CAS  PubMed  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1, interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Burgeff C, Liljegren SJ, Tapia-López R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression in lateral primordia meristems, differentiated tissues of Arabidopsis thaliana roots. Planta 214:365–372

    Article  CAS  PubMed  Google Scholar 

  • Camargo AP (1985) Florescimento e frutificação do café arábica nas diferentes regiões cafeeiras do Brasil. Pesquisa Agropecuária Brasileira (Brasília) 20(7):831–839

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Dias BFO, Simões-Araújo JL, Russo CAM, Margis R, Alves-Ferreira M (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to an understanding of their developmental role in trees. Genetics 28(3):501–510

    CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis, display of genome-wide expression patterns. PNAS 95(25):14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel, ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  Google Scholar 

  • Férrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity, plant architecture by FRUITFULL APETALA1, CAULIFLOWER. Development 127:725–734

    PubMed  Google Scholar 

  • Flanagan CA, Ma H (1994) Spatially, temporally regulated expression of the MADS-box gene AGL2 in wild-type, mutant Arabidopsis flowers. Plant Mol Biol 26:581–595

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132(3):429–438

    Article  PubMed  Google Scholar 

  • Gu Q, Férrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    CAS  PubMed  Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  CAS  PubMed  Google Scholar 

  • Heuer S, Lörz H, Dresselhaus T (2000) The MADS box gene ZmMADS2 is specifically expressed in maize pollen, during maize pollen tube growth. Sex Plant Reprod 13:21–27

    Article  CAS  Google Scholar 

  • Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T (2001) The maize MADS box gene ZmMADS3 affects node number, spikelet development, is co-expressed with ZmMADS1 during flower development in egg cells, early embryogenesis. Plant Physiol 127:33–45

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Tudor M, Weiss C, Hu Y, Ma H (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed, encodes a sequence-specific DNA-binding protein. Plant Mol Biol 28:549–567

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  CAS  PubMed  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nature 6:688–698

    CAS  Google Scholar 

  • Lawton-Rauh AL, Alvarez-Buylla ER, Purugganan MD (2000) Molecular evolution of flower development. Trends Ecol Evol 15:144–149

    Article  PubMed  Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • Litt A, Irish VF (2003) Duplication, diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR, the 22DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ (1995) A characterization of the MADS-box gene family in maize. Plant J 8:845–854

    CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) Flowering Locus C encodes a novel MADS domain protein that act as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  Google Scholar 

  • Morais H, Caramori PH, Koguishi MS, Ribeiro AMA (2008) Escala fenológica detalhada da fase reprodutiva de Coffea arabica. Bragantia 67(1):257–260

    Article  Google Scholar 

  • Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale R (1998) Family of MADS-box genes expressed in early male, female reproductive structures of Monterey pine. Plant Physiol 117:55–61

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell Supplement, pp S11–S130

  • Münster T, Deleu W, Wingen LU, Ouzunova M, Cachárron J, Faigl W, Werth S, Kim JTT, Saedler H, Theißen G (2002a) Maize MADS-box genes galore. Maydica 47:287–301

    Google Scholar 

  • Münster T, Faigl W, Saedler H, Theißen G (2002b) Evolutionary aspects of MADS-box genes in the eusporangiate fern Ophioglossum. Plant Biol 4:474–483

    Article  Google Scholar 

  • Ng M, Yanofsky M (2001) Function, evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–185

    Article  CAS  PubMed  Google Scholar 

  • Onouchi H, Igeno MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-times genes. Plant Cell 12:885–900

    Article  CAS  PubMed  Google Scholar 

  • Parenicová L, Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular, phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Pezzopane JRM, Pedro Junior MJ, de Camargo MBP, Fazuoli LC (2008) Heat requeriments of Mundo Novo coffee for the flowering-harvest phenological stage. Ciência e Agrotecnologia 32:1781–1786

    Article  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel, ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 13:62–66

    Article  Google Scholar 

  • Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol 126(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Rena AB, Maestri M (1985) Fisiologia do cafeeiro. Informe Agropecuário (Belo Horizonte) 11(126):26–40

    Google Scholar 

  • Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1 APETALA3 PISTILLATA, AGAMOUS. PNAS 93:4793–4798

    Article  CAS  PubMed  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationships between the transcription of two Arabidopsis MADS box genes, the floral organ identity genes. Plant Cell 7:721–733

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART a simple modular architecture research tool: identification of signaling domains. PNAS 95:5857–5864

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). PNAS 97:3753–3758

    Article  CAS  PubMed  Google Scholar 

  • Silva LHCP, Resende MLV, Martins H Jr, Campos JR, Souza RM, Castro RM (2000) Épocas e modo de aplicação do ativador de plantas benzothiadiazole (BHT) na proteção contra a mancha bacteriana do tomateiro. Horticultura Brasileira (Brasília) 18:375–376

    Google Scholar 

  • Sitnikova T, Rzhetsky A, Nei M (1995) Interior-branch, bootstrap tests of phylogenetics trees. Mol Biol Evol 12:319–333

    CAS  PubMed  Google Scholar 

  • Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z (1990) Deficiens a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • Theißen G, Kim JT, Saedler H (1996) Classification, phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Molecular Biology 42:115–149

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties, weight matrix choice. Nucleic Acids Research 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11(13):4693–4704

    PubMed  Google Scholar 

  • Vieira LGE et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Brazilian J Plant Physiol 18(1):95–108

    CAS  Google Scholar 

  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult, fetal expression, identification of 535 housekeeping/maintenance genes. Physiological Genomics 2:143–147

    CAS  PubMed  Google Scholar 

  • Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16(5):1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Winter K-U, Becker A, Münster T, Kim JT, Saedler H, Theißen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. PNAS 96:7342–7347

    Article  CAS  PubMed  Google Scholar 

  • Winter K-U, Saedler H, Theißen G (2002a) On the origin of class B floral homeotic genes: functional substitution, dominant inhibition in Arabidopsis by expression of an ortholog from the gymnosperm Gnetum. Plant Journal 31:457–475

    Article  CAS  PubMed  Google Scholar 

  • Winter K-U, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theißen G (2002b) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587–596

    CAS  PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-like 24 dosage-dependent mediator of the flowering signals. PNAS 99:16336–16341

    Article  CAS  PubMed  Google Scholar 

  • Zachgo S, Saedler H, Schwarz-Sommer Z (1997) Pollen-specific expression of DEFH125 a MADS-box transcription factor in Antirrhinum with unusual features. Plant Journal 11:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chalfun-Junior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data

Sequence name and GenBank accession numbers of the MADS sequences found in CAFEST (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, R.R., Chalfun-Junior, A., Paiva, L.V. et al. In Silico and Quantitative Analyses of MADS-Box Genes in Coffea arabica . Plant Mol Biol Rep 28, 460–472 (2010). https://doi.org/10.1007/s11105-009-0173-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0173-5

Keywords

Navigation