Skip to main content
Log in

Strong Expression and Conserved Regulation of ACT2 in Arabidopsis thaliana and Physcomitrella patens

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An S, Mopps B, Weber K, Bhattacharya D (1999) The origin and evolution of green algal and plant actins. Mol Biol Evol 16:275–285

    CAS  PubMed  Google Scholar 

  • An YQ, Huang S, McDowell JM, McKinney EC, Meagher RB (1996a) Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. Plant Cell 8:15–30

    Article  CAS  PubMed  Google Scholar 

  • An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996b) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  CAS  PubMed  Google Scholar 

  • Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. TAG Theor Appl Genet 101:1–6

    Article  Google Scholar 

  • Barone P, Rosellini D, LaFayette P, Bouton J, Veronesi F, Parrott W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27:893–901

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. Embo J 9:1685–1696

    CAS  PubMed  Google Scholar 

  • Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, Pachter L, Rubin EM (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299:1391–1394

    Article  CAS  PubMed  Google Scholar 

  • Buchman AR, Berg P (1988) Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 8:4395–4405

    CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  CAS  PubMed  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Moss as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  PubMed  Google Scholar 

  • Damiani R Jr, Wessler S (1993) An upstream open reading frame represses expression of Lc, A member of the R/B family of maize transcriptional activators. PNAS 90:8244–8248

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  • Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Nicolae D, Lu HH-S, Li W-H (2002) Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18:609–613

    Article  CAS  PubMed  Google Scholar 

  • Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, Shelton DA, Tagle DA, Slightom JL, Goodman M, Collins FS (1992) Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Mol Cell Biol 12:4919–4929

    CAS  PubMed  Google Scholar 

  • Guo H, Moose SP (2003) Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. Plant Cell 15:1143–1158

    Article  CAS  PubMed  Google Scholar 

  • Hong RL, Hamaguchi L, Busch MA, Weigel D (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 15:1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Horstmann V, Huether C, Jost W, Reski R, Decker E (2004) Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol 4:13

    Article  PubMed  Google Scholar 

  • Inada DC, Bashir A, Lee C, Thomas BC, Ko C, Goff SA, Freeling M (2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    Article  CAS  PubMed  Google Scholar 

  • Ivo N, Nascimento C, Vieira L, Campos F, Aragão F (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Knight CD, Cove DJ, Boyd PJ, Ashton NW (eds) (1988) The isolation of biochemical and developmental mutants in Physcomitrella patens. The Hattori Botanical Laboratory, Miyazaki

    Google Scholar 

  • Kobayashi K, Munemura I, Hinata K, Yamamura S (2006) Bisexual sterility conferred by the differential expression of barnase and barstar: a simple and efficient method of transgene containment. Plant Cell Rep 25:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1987) An analysis of 5′ noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  CAS  PubMed  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  Google Scholar 

  • Li W-H, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21:602–607

    Article  PubMed  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    Article  CAS  PubMed  Google Scholar 

  • McClary JA, Witney F, Geisselsoder J (1989) Efficient site-directed in vitro mutagenesis using phagemid vectors. Biotechniques 7:282–289

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An YQ, Meagher RB (1996) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    CAS  PubMed  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB, McKinney EC, Vitale AV (1999) The evolution of new structures: clues from plant cytoskeletal genes. Trends Genet 15:278–284

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back totranscription and ahead to translation. Cell 136:688–700

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21:895–906

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 88:478–482

    Article  CAS  PubMed  Google Scholar 

  • Pearson L, Meagher RB (1990) Diverse soybean actin transcripts contain a large intron in the 5′ untranslated leader: structural similarity to vertebrate muscle actin genes. Plant Mol Biol 14:513–526

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-i, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 15:1543–1558

    Article  CAS  PubMed  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1983) Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet 2:111–126

    CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotech 26:1135–1145

    Article  CAS  Google Scholar 

  • Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455

    Article  CAS  PubMed  Google Scholar 

  • Thomas BC, Rapaka L, Lyons E, Pedersen B, Freeling M (2007) Arabidopsis intragenomic conserved noncoding sequence. Proc Natl Acad Sci 104:3348–3353

    Article  CAS  PubMed  Google Scholar 

  • Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Wu RJ, Cheng Z, Meagher RB (2003) Multiple conserved 5' elements are required for high-level pollen expression of the Arabidopsis reproductive actin ACT1. Plant Mol Biol 52:1135–1151

    Article  CAS  PubMed  Google Scholar 

  • Weise A, Rodriguez-Franco M, Timm B, Hermann M, Link S, Jost W, Gorr G (2006) Use of Physcomitrella patens actin 5′ regions for high transgene expression: importance of 5′ introns. Appl Microbiol Biotechnol 70:337–345

    Article  CAS  PubMed  Google Scholar 

  • Xu D, McElroy D, Thornburg RW, Wu R (1993) Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol 22:573–588

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Joe N, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26:1195–1203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank anonymous reviewers for constructive comment and Ms. Libby McKinney for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Qiang Charles An or Richard B. Meagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, YQ.C., Meagher, R.B. Strong Expression and Conserved Regulation of ACT2 in Arabidopsis thaliana and Physcomitrella patens . Plant Mol Biol Rep 28, 481–490 (2010). https://doi.org/10.1007/s11105-009-0171-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0171-7

Keywords

Navigation