Skip to main content
Log in

Molecular Marker Analysis of Differentially Aged Seeds of Soybean and Safflower

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Storage of seeds for extended periods causes a number of degradative changes related to the aging process such as decreased seedling vigor and reduced germination. In this study, molecular markers were used to study the aging process in seeds of two different plants species. Seeds of three differentially aged seed groups, including control (un-aged), naturally aged, and accelerated aging, from soybean (Glycine max) and safflower (Carthamus tinctorius) were evaluated for genetic variability using random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. For both plant species, naturally aged and accelerated aged groups clustered together with RAPD markers, whereas control and naturally aged seeds showed similarity in both AFLP and SSR profiles. Based on these findings, it can be concluded that observed changes in DNA profiles of seeds from different aged groups did not contribute to accumulation of genetic variations of the same magnitude. Therefore, seed of similar viability must be selected for molecular marker analysis for plant variety protection, among other comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdalla FH, Roberts EH (1968) Effects of temperature, moisture, and oxygen on the induction of chromosome damage in seeds of barley, broad beans, and peas during storage. Ann Bot (Lond) 32:119–136

    Google Scholar 

  • Bednarek PT, Chwdorzewska K, Puchalski J (1998) Preliminary molecular studies on genetic changes in rye seeds due to long-term storage and regeneration. In: Gass T, Podyma W, Puchalski J, Eberhart SA (eds) Challenges in rye germplasm conservation. Int Plant Genet Resources Institute, pp 54–61

  • Boubriak I, Naumenko V, Lyne L, Osborne DJ (1999) Loss of viability in rye embryos at different levels of hydration: Senescence with apoptotic nucleosome cleavage or death with random DNA fragmentation. In: Black M, Bradford KJ, Vazquez-Ramos J (eds) Seed biology: advances and applications. CABI, Cambridge, pp 205–214

    Google Scholar 

  • Chwedorzewska KJ, Bednarek PT, Puchalski J (2002a) AFLP-profiling long term stored and regenerated rye gene bank samples. Cell Mol Biol Lett 7:457–463

    PubMed  CAS  Google Scholar 

  • Chwedorzewska KJ, Bednarek PT, Puchalski J (2002b) Studies on changes in specific rye genome regions due to seed aging and regeneration. Cell Mol Biol Lett 7:569–576

    PubMed  CAS  Google Scholar 

  • Coello P, Vazquez-Ramos JM (1996) Maize DNA polymerase 2 (an alpha-type enzyme) suffers major damage after seed deterioration. Seed Sci Res 6:1–7. doi:10.1017/S0960258500002932

    Article  CAS  Google Scholar 

  • Cooke RJ, Bredemeijer GMM, Ganal MW, Peeters R, Isaac P, Rendell S, Jackson J, Roder MS, Korzun V, Wendehake K, Areshchenkaova T, Dijcks M, Laborie D, Bertrand L, Vosman B (2003) Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132:331–341. doi:10.1023/A:1025046919570

    Article  CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Vantoai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957. doi:10.1111/j.1365-313X.2007.03103.x

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390. doi:10.1046/j.1439-0523.1999.00401.x

    Article  CAS  Google Scholar 

  • Gutierrez G, Cruz F, Moreno J, Gonzalez-Hernandez VA, Vazquez-Ramos JM (1993) Natural and artificial seed ageing in maize: germination and DNA synthesis. Seed Sci Res 3:279–285. doi:10.1017/S0960258500001896

    Article  CAS  Google Scholar 

  • ISTA (2004) International seed testing rules, 2004. International Seed Testing Association, Zurich, Switzerland

    Google Scholar 

  • Kang HW, Cho YG, Yoon UH, Eun MY (1998) A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed. Plant Mol Biol Rep 16:1–9. doi:10.1023/A:1007418606098

    Article  Google Scholar 

  • Larson RA (1997) In: Larson RA (ed) Naturally occurring antioxidants. Lewis Publications, Boca Raton

    Google Scholar 

  • Liu F, Zhuang BC, Zhang JS, Chen SY (2000) Construction and analysis of soybean genetic map. Acta Genetica Sin 11:1018–1026. (Yichuan Xuebao)

    Google Scholar 

  • Marcos-Filho J, McDonald MB (1998) RAPD profiles, germination and vigour of naturally and artificially aged soybean seeds. Seed Sci Tech 26:141–156

    Google Scholar 

  • Marcos-Filho J, McDonald MB, Tekrony DM, Zhang J (1997) RAPD fragment profiles from deteriorating soybean seeds. Seed Technol 19:33–44

    Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Tech 27:177–237

    Google Scholar 

  • Matsumura H, Liu B, Abe J, Takahashi R (2008) AFLP mapping of soybean maturity gene E4. J Hered 99:193–197. doi:10.1093/jhered/esm114

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Roos EE, Tsuchiya T (1981) Chromosome damage induced b artificial seed ageing in barley. I. Germinability and frequency of aberrant anaphases at first mitosis. Can J Genet Cytol 23:267–280

    Google Scholar 

  • Panguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2006) AFLP fingerprinting in Pigeonpea (Cajanus cajan (L.) Millsp.) and its wild relatives. Genet Resour Crop Evol 53:523–531. doi:10.1007/s10722-004-2031-5

    Article  Google Scholar 

  • Paniego N, Echaide M, Munoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suarez EY, Hopp HE (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43. doi:10.1139/g01-120

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Aftergoot E, Shifriss C (1998) Variation in Capsicum annum revealed by RAPD and AFLP markers. Euphytica 99:167–173. doi:10.1023/A:1018301215945

    Article  CAS  Google Scholar 

  • Rao LS, Usha Rani P, Deshmukh PS, Kumar PA, Panguluri SK (2007) RAPD and ISSR fingerprinting in cultivated chickpea (Cicer arietinum L.) and its wild progenitor Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 54:1235–1244. doi:10.1007/s10722-006-9104-6

    Article  CAS  Google Scholar 

  • Roberts EH (1973) Loss of seed viability: chromosomal and genetic aspects. Seed Sci Tech 1:515–527

    Google Scholar 

  • Roldá T. n-Arjona, R.R. Ariza. (2008) Repair and tolerance of oxidative DNA damage in plants. Mutat Res. doi:10.1016/j.mrrev.2008.07.003

  • Roos EE (1982) Induced genetic changes in seed germplasm during storage. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, New York, pp 409–434

    Google Scholar 

  • Roos EE (1988) Genetic changes in a collection over time. Hortic Sci 23:86–90

    Google Scholar 

  • Schoen DJ, David JL, Bataillon TM (1998) Deleterious mutation accumulation and the regeneration of genetic resources. Proc Natl Acad Sci U S A 95:394–399. doi:10.1073/pnas.95.1.394

    Article  PubMed  CAS  Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76. doi:10.1007/s10681-005-8496-2

    Article  CAS  Google Scholar 

  • Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2008) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica. doi:10.1007/s10709-008-9292-4

  • Shatters RG Jr, Schweder ME, West SH, Abdelghany A, Smith RL (1995) Environmentally induced polymorphisms detected by RAPD analysis of soybean seed DNA. Seed Sci Res 5:109–116. doi:10.1017/S0960258500002683

    Article  CAS  Google Scholar 

  • Song QJ, Quigley CV, Nelson RL, Carter TE, Boerma HR, Strachan JL, Cregan PB (1999) A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Var Seeds 12:207–220

    Google Scholar 

  • Vijay D, Dadlani M (2003) Seed longevity and water absorption patterns in maize, soybean and safflower. Ind J Plant Physiol 8(Special issue):244–248

    Google Scholar 

  • Villiers TA (1973) Aging and longevity of seeds. In: Heydecker W (ed) Seed ecology. Pennsylvania State University Press, University Park, USA, pp 265–288

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Wilson DO Jr, McDonald MB Jr (1986) The lipid peroxidation model of seed ageing. Seed Sci Tech 14:269–300

    CAS  Google Scholar 

  • Wu XL, He CY, Wang YJ, Zhang ZY, Dongfang Y, Zhang JS, Chen SY, Gai JY (2001) Construction and analysis of a genetic linkage map of soybean. Acta Genetica Sin 11:1051–1061. (Yichuan Xuebao)

    Google Scholar 

  • Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain KG, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K (2007) An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population. DNA Res 14:257–269. doi:10.1093/dnares/dsm027

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, McDonald MB, Sweeney PM (1996) Random amplified polymorphic DNA (RAPD) from seeds of differing soybean and maize genotypes. Seed Sci Tech 4:513–522

    Google Scholar 

  • Zhang L, Huang BB, Kai GY, Guo ML (2006) Analysis of intraspecific variation of Chinese Carthamus tinctorius L. using AFLP markers. Yao Xue Xue Bao 41:91–96

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. B. M. Prasanna, Principal Scientist at Maize Genetics and Biotechnology in the Division of Genetics at the Indian Agricultural Research Institute for providing the radioactive material and equipment for the AFLP analysis. We also thank Andrew Marsh of the James Graham Brown Cancer Center at the University of Louisville for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Kumar Panguluri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijay, D., Dadlani, M., Kumar, P.A. et al. Molecular Marker Analysis of Differentially Aged Seeds of Soybean and Safflower. Plant Mol Biol Rep 27, 282–291 (2009). https://doi.org/10.1007/s11105-008-0085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0085-9

Keywords

Navigation